Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.6.556

Bacterial Lipopolysaccharides Induce Steroid Sulfatase Expression and Cell Migration through IL-6 Pathway in Human Prostate Cancer Cells  

Im, Hee-Jung (College of Pharmacy, Chung-Ang University)
Park, Na-Hee (College of Pharmacy, Chung-Ang University)
Kwon, Yeo-Jung (College of Pharmacy, Chung-Ang University)
Shin, Sangyun (College of Pharmacy, Chung-Ang University)
Kim, Donghak (Department of Biological Sciences, Konkuk University)
Chun, Young-Jin (College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.20, no.6, 2012 , pp. 556-561 More about this Journal
Abstract
Steroid sulfatase (STS) is responsible for the conversion of estrone sulfate to estrone that can stimulate growth in endocrine-dependent tumors such as prostate cancer. Although STS is considered as a therapeutic target for the estrogen-dependent diseases, cellular function of STS are still not clear. Previously, we found that tumor necrosis factor (TNF)-${\alpha}$ significantly enhances steroid sulfatase expression in PC-3 human prostate cancer cells through PI3K/Akt-dependent pathways. Here, we studied whether bacterial lipopolysaccharides (LPS) which are known to induce TNF-${\alpha}$ may increase STS expression. Treatment with LPS in PC-3 cells induced STS mRNA and protein in concentration- and time-dependent manners. Using luciferase reporter assay, we found that LPS enhanced STS promoter activity. Moreover, STS expression induced by LPS increased PC-3 tumor cell migration determined by wound healing assay. We investigated that LPS induced IL-6 expression and IL-6 increased STS expression. Taken together, these data strongly suggest that LPS induces STS expression through IL-6 pathway in human prostate cancer cells.
Keywords
Steroid sulfatase; Lipopolysaccharides; Interleukin-6; Tumor cell migration; PC-3;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahmed, S., Owen, C. P., James, K., Sampson, L. and Patel, C. K. (2002) Review of estrone sulfatase and its inhibitors--an important new target against hormone dependent breast cancer. Curr. Med. Chem. 9, 263-273.   DOI
2 Aidoo-Gyamfi, K., Cartledge, T., Shah, K. and Ahmed, S. (2009) Estrone sulfatase and its inhibitors. Anticancer Agents Med. Chem. 9, 599-612.   DOI
3 Bao, H., Lu, P., Li, Y., Wang, L., Li, H., He, D., Yang, Y., Zhao, Y., Yang, L., Wang, M., Yi, Q. and Cai, Z. (2011) Triggering of toll-like receptor-4 in human multiple myeloma cells promotes proliferation and alters cell responses to immune and chemotherapy drug attack. Cancer Biol. Ther. 11, 58-67.   DOI
4 Chang, M. (2011) Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Rep. 44, 423-434.   DOI
5 Daynes, R. A., Dudley, D. J. and Araneo, B. A. (1990) Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur. J. Immunol. 20, 793-802.   DOI   ScienceOn
6 Finzi, L., Shao, M. X., Paye, F., Housset, C. and Nadel, J. A. (2009) Lipopolysaccharide initiates a positive feedback of epidermal growth factor receptor signaling by prostaglandin E2 in human biliary carcinoma cells. J. Immunol. 182, 2269-2276.   DOI
7 Greenhill, C. J., Rose-John, S., Lissilaa, R., Ferlin, W., Ernst, M., Hertzog, P. J., Mansell, A. and Jenkins, B. J. (2011) IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol. 186, 1199-1208.   DOI
8 Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94.   DOI   ScienceOn
9 Harkonen, P. L. and Makela, S. I. (2004) Role of estrogens in development of prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 297-305.   DOI
10 Hattar, K., Savai, R., Subtil, F. S., Wilhelm, J., Schmall, A., Lang, D. S., Goldmann, T., Eul, B., Dahlem, G., Fink, L., Schermuly, R. T., Banat, G. A., Sibelius, U., Grimminger, F., Vollmer, E., Seeger, W. and Grandel, U. (2012) Endotoxin induces proliferation of NSCLC in vitro and in vivo: role of COX-2 and EGFR activation. Cancer Immunol. Immunother. [Epub ahead of print]
11 Honma, S., Shimodaira, K., Shimizu, Y., Tsuchiya, N., Saito, H., Yanaihara, T. and Okai, T. (2002) The influence of inflammatory cytokines on estrogen production and cell proliferation in human breast cancer cells. Endocr. J. 49, 371-377.   DOI
12 Koh, E., Noda, T., Kanaya, J. and Namiki, M. (2002) Differential expression of 17beta-hydroxysteroid dehydrogenase isozyme genes in prostate cancer and noncancer tissues. Prostate 53, 154-159.   DOI
13 Kriz, L., Bicikova, M. and Hampl, R. (2008) Roles of steroid sulfatase in brain and other tissues. Physiol. Res. 57, 657-668.
14 Nakamura, Y., Suzuki, T., Nakabayashi, M., Endoh, M., Sakamoto, K., Mikami, Y., Moriya, T., Ito, A., Takahashi, S., Yamada, S., Arai, Y. and Sasano, H. (2005) In situ androgen producing enzymes in human prostate cancer. Endocr. Relat. Cancer 12, 101-107.   DOI
15 Li, H., Yuan, X., Tang, J. and Zhang, Y. (2012). Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L569-579.   DOI
16 Lu, H., Ouyang, W. and Huang, C. (2006) Inflammation, a key event in cancer development. Mol. Cancer Res. 4, 221-233.   DOI   ScienceOn
17 Makela, S. M., Strengell, M., Pietila, T. E., Osterlund, P. and Julkunen, I. (2009) Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells. J. Leukoc. Biol. 85, 664-672.   DOI
18 Nussbaumer, P. and Billich, A. (2005) Steroid sulfatase inhibitors: their potential in the therapy of breast cancer. Curr. Med. Chem. Anticancer Agents 5, 507-528.   DOI
19 Okada, H., Ohtsuka, H., Kon Nai, S., Kirisawa, R., Yokomizo, Y., Yoshino, T. and Rosol, T. J. (1999) Effects of lipopolysaccharide on production of interleukin-1 and interleukin-6 by bovine mammary epithelial cells in vitro. J. Vet. Med. Sci. 61, 33-35.   DOI
20 Park, J. H., Kwon, S. M., Yoon, H. E., Kim, S. A., Ahn, S. G. and Yoon, J. H. (2011) Lipopolysaccharide promotes adhesion and migration of murine dental papilla-derived MDPC-23 cells via TLR4. Int. J. Mol. Med. 27, 277-281.
21 Pasqualini, J. R. (2009) Breast cancer and steroid metabolizing enzymes: the role of progestogens. Maturitas 65 Suppl 1, S17-21.   DOI
22 Purohit, A., Woo, L. W. and Potter, B. V. (2011) Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol. Cell. Endocrinol. 340, 154-160.   DOI
23 Phan, C. M., Liu, Y., Kim, B. M., Mostafa, Y. and Taylor, S. D. (2011) Inhibition of steroid sulfatase with 4-substituted estrone and estradiol derivatives. Bioorg. Med. Chem. 19, 5999-6005.   DOI
24 Purohit, A. and Foster, P. A. (2012) Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. J. Endocrinol. 212, 99-110.   DOI
25 Purohit, A., Wang, D. Y., Ghilchik, M. W. and Reed, M. J. (1996) Regulation of aromatase and sulphatase in breast tumour cells. J. Endocrinol. 150 Suppl, S65-71.
26 Reed, M. J. (1995) The discriminant-function test: a marker of Th1/Th2 cell cytokine secretion and breast tumour oestrogen synthesis. Mol. Med. Today 1, 98-103.   DOI
27 Reed, M. J. and Purohit, A. (1997) Breast cancer and the role of cytokines in regulating estrogen synthesis: an emerging hypothesis. Endocr. Rev. 18, 701-715.   DOI
28 Reed, M. J., Purohit, A., Woo, L. W., Newman, S. P. and Potter, B. V. (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev. 26, 171-202.   DOI
29 Sawa, Y., Ueki, T., Hata, M., Iwasawa, K., Tsuruga, E., Kojima, H., Ishikawa, H. and Yoshida, S. (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J. Histochem. Cytochem. 56, 97-109.   DOI
30 Schetter, A. J., Heegaard, N. H. and Harris, C. C. (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31, 37-49.   DOI
31 Suzuki, T., Nakata, T., Miki, Y., Kaneko, C., Moriya, T., Ishida, T., Akinaga, S., Hirakawa, H., Kimura, M. and Sasano, H. (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res. 63, 2762-2770.
32 Schmidt, M., Kreutz, M., Loffler, G., Scholmerich, J. and Straub, R. H. (2000) Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J. Endocrinol. 164, 161-169.   DOI
33 Stanway, S. J., Delavault, P., Purohit, A., Woo, L. W., Thurieau, C., Potter, B. V. and Reed, M. J. (2007) Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist. 12, 370-374.   DOI
34 Suzuki, T., Miki, Y., Nakamura, Y., Moriya, T., Ito, K., Ohuchi, N. and Sasano, H. (2005) Sex steroid-producing enzymes in human breast cancer. Endocr. Relat. Cancer 12, 701-720.   DOI
35 Tajima, T., Murata, T., Aritake, K., Urade, Y., Hirai, H., Nakamura, M., Ozaki, H. and Hori, M. (2008) Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J. Pharmacol. Exp. Ther. 326, 493-501.   DOI
36 Utsumi, T., Yoshimura, N., Takeuchi, S., Maruta, M., Maeda, K. and Harada, N. (2000) Elevated steroid sulfatase expression in breast cancers. J. Steroid Biochem. Mol. Biol. 73, 141-145.   DOI
37 Walton, K. L., Holt, L. and Sartor, R. B. (2009) Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G601-611.   DOI
38 Wang, J. H., Manning, B. J., Wu, Q. D., Blankson, S., Bouchier-Hayes, D. and Redmond, H. P. (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J. Immunol. 170, 795-804.   DOI
39 Wright, R. M., Holladay, C. S. and Spangelo, B. L. (1993) Lipopolysaccharide induces interleukin-6 release from rat peritoneal macrophages in vitro: evidence for a novel mechanism. Circ. Shock 41, 131-137.
40 Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L. and Nickerson, C. A. (2002) Mechanisms of bacterial pathogenicity. Postgrad. Med. J. 78, 216-224.   DOI