DOI QR코드

DOI QR Code

The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase

  • Park, Seon-Ha (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kang, Ji-Yeon (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Dong-Hyun (School of Biological Sciences and Technology, Chonnam National University) ;
  • Ahn, Taeho (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2012.09.07
  • Accepted : 2012.10.04
  • Published : 2012.11.30

Abstract

Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics ($k_{cat}=4120\;min^{-1}$, $K_m=77{\mu}M$ for MTT and $k_{cat}=6580\;min^{-1}$, $K_m=51{\mu}M$ for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.

Keywords

References

  1. Altman, F. P. (1976) Tetrazolium salts and formazans. Prog. Histochem. Cytochem. 9, 1-56. https://doi.org/10.1267/ahc.9.1
  2. Bernas, T. and Dobrucki, J. (1999) Reduction of a tetrazolium salt, CTC, by intact HepG2 human hepatoma cells: subcellular localisation of reducing systems. Biochim. Biophys. Acta 1451, 73-81. https://doi.org/10.1016/S0167-4889(99)00071-3
  3. Boddupalli, S. S., Oster, T., Estabrook, R. W. and Peterson, J. A. (1992) Reconstitution of the fatty acid hydroxylation function of cytochrome P-450BM-3 utilizing its individual recombinant hemo- and flavoprotein domains. J. Biol. Chem. 267, 10375-10380.
  4. Davydov, D. R., Kariakin, A. A., Petushkova, N. A. and Peterson, J. A. (2000) Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry 39, 6489-6497. https://doi.org/10.1021/bi992936u
  5. Davydov, D. R., Sineva, E. V., Sistla, S., Davydova, N. Y., Frank, D. J., Sligar, S. G. and Halpert, J. R. (2010) Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. Biochim. Biophys. Acta 1797, 378-390. https://doi.org/10.1016/j.bbabio.2009.12.008
  6. Dodhia, V. R., Fantuzzi, A. and Gilardi, G. (2006) Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego. J. Biol. Inorg. Chem. 11, 903-916. https://doi.org/10.1007/s00775-006-0144-3
  7. Fernando, H., Halpert, J. R. and Davydov, D. R. (2008) Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Arch. Biochem. Biophys. 471, 20-31. https://doi.org/10.1016/j.abb.2007.11.020
  8. French, J. S. and Coon M. J. (1979) Properties of NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes. Arch. Biochem. Biophys. 195, 565-577. https://doi.org/10.1016/0003-9861(79)90383-7
  9. Guengerich, F. P., Kim, D. H. and Iwasaki, M. (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 4, 168-179. https://doi.org/10.1021/tx00020a008
  10. Hazzard, J. T., Govindaraj, S., Poulos, T. L. and Tollin, G. (1997) Electron transfer between the FMN and heme domains of cytochrome P450BM-3. Effects of substrate and CO. J. Biol. Chem. 272, 7922-7926. https://doi.org/10.1074/jbc.272.12.7922
  11. Jamakhandi, A. P., Jeffus, B. C., Dass, V. R. and Miller, G. P. (2005) Thermal inactivation of the reductase domain of cytochrome P450 BM3. Arch. Biochem. Biophys. 439, 165-174. https://doi.org/10.1016/j.abb.2005.04.022
  12. Kim, D. H., Yim, S. K., Kim, K. H., Ahn, T. and Yun, C. H. (2009) Continuous spectrofluorometric and spectrophotometric assays for NADPH-cytochrome P450 reductase activity using 5-cyano-2,3-ditolyl tetrazolium chloride. Biotechnol. Lett. 31, 271-275. https://doi.org/10.1007/s10529-008-9865-4
  13. Kim, K. H., Isin, E. M., Yun, C. H., Kim, D. H. and Guengerich, F. P. (2006) Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation. FEBS J. 273, 2223-2231. https://doi.org/10.1111/j.1742-4658.2006.05235.x
  14. Miles, J. S., Munro, A. W., Rospendowski, B. N., Smith, W. E., McKnight, J. and Thomson, A. J. (1992) Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem. J. 288, 503-509. https://doi.org/10.1042/bj2880503
  15. Mizutani, H., Oikawa, S., Hiraku, Y., Murata, M., Kojima, M. and Kawanishi, S. (2003) Distinct mechanisms of site-specific oxidative DNA damage by doxorubicin in the presence of copper(II) and NADPH-cytochrome P450 reductase. Cancer Sci. 94, 686-691. https://doi.org/10.1111/j.1349-7006.2003.tb01503.x
  16. Munro, A. W., Leys, D. G., McLean, K. J., Marshall, K. R., Ost, T. W., Daff, S., Miles, C. S., Chapman, S. K., Lysek, D. A., Moser, C.C., Page, C. C. and Dutton, P. L. (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. 27, 250-257. https://doi.org/10.1016/S0968-0004(02)02086-8
  17. Munro, A. W., Lindsay, J. G., Coggins, J. R., Kelly, S. M. and Price, N. C. (1996) Analysis of the structural stability of the multidomain enzyme flavocytochrome P-450 BM3. Biochim. Biophys. Acta 1296, 127-137. https://doi.org/10.1016/0167-4838(96)00061-1
  18. Narhi, L. O. and Fulco, A. J. (1987) Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 262, 6683-6690.
  19. Pan, S. S., Andrews, P. A., Glover, C. J. and Bachur, N. R. (1984) Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J. Biol. Chem. 259, 959-966.
  20. Ruettinger, R. T., Wen, L. P. and Fulco, A. J. (1989) Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J. Biol. Chem. 264, 10987-10995.
  21. Sevrioukova, I. F. and Peterson, J. A. (1995) NADPH-P-450 reductase: structural and functional comparisons of the eukaryotic and prokaryotic isoforms. Biochimie 77, 562-572. https://doi.org/10.1016/0300-9084(96)88172-7
  22. Sevrioukova, I., Shaffer, C., Ballou, D. P. and Peterson, J. A. (1996a) Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Biochemistry 35, 7058-7068. https://doi.org/10.1021/bi960060a
  23. Sevrioukova, I., Truan, G. and Peterson, J. A. (1996b) The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Biochemistry 35, 7528-7535. https://doi.org/10.1021/bi960330p
  24. Siegel, D., Beall, H., Senekowitsch, C., Kasai, M., Arai, H., Gibson, N.W. and Ross, D. (1992) Bioreductive activation of mitomycin C by DT-diaphorase. Biochemistry 31, 7879-7885. https://doi.org/10.1021/bi00149a019
  25. Yim, S. K., Yun, C. H., Ahn, T., Jung, H. C. and Pan, J. G. (2005) A continuous spectrophotometric assay for NADPH-cytochrome P450 reductase activity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. J. Biochem. Mol. Biol. 38, 366-369. https://doi.org/10.5483/BMBRep.2005.38.3.366
  26. Yim, S. K., Yun, S. J. and Yun, C. H. (2004) A continuous spectrophotometric assay for NADPH-cytochrome P450 reductase activity using 1,1-diphenyl-2-picrylhydrazyl. J. Biochem. Mol. Biol. 37, 629-633 https://doi.org/10.5483/BMBRep.2004.37.5.629
  27. Yun, C. H., Miller, G. P. and Guengerich, F. P. (2000) Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants. Biochemistry 39, 11319-11329. https://doi.org/10.1021/bi000869u

Cited by

  1. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae vol.14, pp.1, 2015, https://doi.org/10.1186/s12934-015-0228-2
  2. Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum vol.138, 2017, https://doi.org/10.1016/j.pep.2017.07.001
  3. Quorum Quenching Enzymes and Biofouling Control vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1487
  4. Bacteria Generated Antibacterial Gold Nanoparticles and Potential Mechanistic Insight vol.26, pp.5, 2015, https://doi.org/10.1007/s10876-015-0869-7
  5. Comparative functional characterization of a novel benzoate hydroxylase cytochrome P450 of Fusarium oxysporum vol.70, 2015, https://doi.org/10.1016/j.enzmictec.2014.12.013
  6. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag vol.27, pp.5, 2012, https://doi.org/10.4014/jmb.1701.01028