DOI QR코드

DOI QR Code

Bonding Quality of Cylindrical LVL and Surface Durability by Its Painting

원통형 단판적층재의 접착성 및 도장처리에 따른 표면내구성

  • Received : 2012.07.27
  • Accepted : 2012.10.05
  • Published : 2012.11.25

Abstract

In order to develop the end use of cylindrical laminated veneer lumber (LVL) such as wooden crafts, the water proof-bonding strength, the resistance to abrasion and the surface hardness by painting the surface of LVL were investigated. The study results were as follows; The water proof-bonding strength through 5 cyclic test by boiling in water immersion and drying were favorable without delamination of glue line. Then the formulation of glue was resorcinol resin (100) to hardener of paraformaldehyde (5) by mixed weight percentage. The resistance to abrasion was relatively higher at cross section than tangential section. When tangential section of LVL was painted by UV protection oil, the resistance to abrasion was improved. In case of an cross section of LVL, the higher surface hardness appeared at larch core than radiata pine LVL. Also, in case of an tangential section of LVL, the higher surface hardness appeared at glue line than veneer side.

원통형 단판적층재(LVL)의 구조재 이외의 공예재 등의 용도개발을 위하여 원통형 단판적층재의 내수접착성과 도장처리에 따른 내마모성 및 표면경도를 측정하였다. 레조시놀 수지와 경화제(paraformaldehyde)를 100 : 5의 혼합비로 하여 접착 경화한 원통형 단판적층재의 전체적인 접착층에 대한 삶음박리 접착력은 양호한 편이었다. 내마모성은 횡단면이 접선단면보다 상대적으로 우수하였으며, 접선단면에 자외선 차단 오일을 도장 처리한 경우 내마모성이 향상되었다. 표면경도는 횡단면의 경우, 낙엽송 중심재가 라디에타소나무 단판적층 부위보다 높았고, 접선단면의 경우에는 접착층 부위가 단판부위보다 높게 나타났다.

Keywords

References

  1. 강춘원, 김남훈, 김병로, 김영숙, 변희섭, 소원택, 여환명, 오승원, 이원희, 이화형. 2008. 신고 목재물리 및 역학. 향문사: 308-307.
  2. 오세창. 2011. 단판적층재(LVL)의 전단강도 시험방법 에 관한 비교 연구. 대한건축학회논문집 구조계 27(12): 41-48.
  3. 이남호, 김광철. 2011. 스킨팀버 제조기술 및 용도개발. 산림청.
  4. 한국표준협회. 2004. 목재의 경도시험 방법. KS F 2212.
  5. 한국표준협회. 2008. 천연무늬목 치장 마루판-내마모성 시험 방법. KS F 3111.
  6. 홍순일. 1999. 상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 결합부의 크리프 변형 거동. 임산에너지 19(2): 84-91.
  7. Berard, P., P. Yang, H. Yamauchi, K. Umemura, and S. Kawai. 2011. Modeling of a cylindrical laminated veneer lumber I: mechnical properties of hinoki (Chamaecyparis obtusa) and the reliability of a nonlinear finite elements model of a four-point bending test. J Wood Sci 57: 100-106. https://doi.org/10.1007/s10086-010-1150-1
  8. Berard, P., P. Yang, H. Yamauchi, K. Umemura, and S. Kawai. 2011. Modeling of a cylindrical laminated veneer lumber II: a nonlinear finite element model to improve the quality of the butt joint. J. Wood Sci. 57: 107-113. https://doi.org/10.1007/s10086-010-1148-8
  9. Hata, T., K. Umemura, and S. Kawai. 1998. Continuous manufacturing of cylindrical-LVL by using "spiral-winding method". 47rd Annual meeting of Japan wood research society: 92-95.
  10. Hata, T., K. Umemura, H. Yamauchi, A. Nakayama, S. Kawai, and H. Sasaki. 2001. Design and pilot production of a "spiral-winder" for the manufacture of cylindrical laminated veneer lumber. J. Wood Sci. 47: 115-123. https://doi.org/10.1007/BF00780559
  11. Inaba, D., M. Morita, H. Nakano, A. Takenaka, and S. Kawai. 2003. Continuous manufacture of cylindrical laminated veneer lumber. 53rd Annual meeting of Japan wood research society: 19-20.
  12. (財)日本合板檢査會. 2003. 構造用單板積層材の日本農林規格.

Cited by

  1. Moisture Content Change and Heat Distribution Characteristics of Veneer Heated by Microwave vol.42, pp.4, 2014, https://doi.org/10.5658/WOOD.2014.42.4.407
  2. Bending Strength Performance Evaluation of Glass Fiber Cloth Reinforced Cylindrical Laminated Veneer Lumber vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.415