DOI QR코드

DOI QR Code

Changes in Activities of Lignin Degrading Enzymes and Lignin Content During Degradation of Wood Chips by Polyporus brumalis

겨울우산버섯에 의한 목재칩의 리그닌 분해 효소 활성 및 리그닌 함량 변화

  • Cho, Myung-Kil (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Ryu, Sun-Hwa (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Kim, Myungkil (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 조명길 (국립산림과학원 화학미생물과) ;
  • 유선화 (국립산림과학원 화학미생물과) ;
  • 김명길 (국립산림과학원 화학미생물과)
  • Received : 2012.08.20
  • Accepted : 2012.11.20
  • Published : 2012.11.25

Abstract

In this study, laccase activity, rate of weight loss and degree of lignin degradation of pine wood chips were determined during the liquid and solid state incubation with Polyporus brumalis. The results showed that laccase enzyme activity at untreated wood chip was gradually decreased after 20 days, but enzyme activity with wood chip treatment showed 10 times higher than untreated ones at 60 incubation days. Rate of weight losses of pine chip and rate of lignin loss were 23.4% and 6.3% by P. brumalis during 80 incubation days. Gene expression of pblac1 from P. brumalis was 3 times increased under pine chip treatment at 40 incubation days. Consequently, laccase activity of white rot fungi, P. brumalis, was increased at incubation with wood chip and pblac1 gene was important factor of lignin degradation. Therefore, to regulate lignin degrading enzyme gene expression by using the tools of biotechnology will be able to develop superior strains and it will be useful for pretreatment of lignocellulosic biomass at bioethanol production.

본 연구에서는 국내에서 자생하는 백색부후균인 겨울우산버섯(Polyporus brumalis)을 소나무 시편에 배양하여 목재 처리에 의한 리그닌 분해효소의 활성변화를 조사하고 목재의 분해가 일어나는 동안 중량감소율 및 리그닌 감소율을 통해 분해능을 확인하고 여기에 관여하는 유전자의 발현을 조사하였다. SSC (Shallow Stationary Culture) 액체배지에 목재 시편을 넣고 겨울우산버섯을 배양하였을 때 무처리구에서는 laccase의 활성이 20일 이후 감소하는 반면, 시편 처리구에서는 활성이 계속 증가되었다. 특히, 60일 전후의 처리구에서 무처리구에 비해 10배 이상 높은 활성을 나타내었다. 또한, 겨울우산버섯에 의한 소나무칩의 중량 감소율과 리그닌 감소율은 80일 후 각각 23.4%와 6.3%로 나타났다. 40일 배양한 목질칩에서 분리한 겨울우산버섯의 pblac1의 유전자 발현은 무처리구에 비해 소나무 칩 처리구에서 약 3배 정도 높게 나타났다. 이상의 결과로 백색부후균에 의한 목재칩 처리에 의해 리그닌 분해효소의 활성이 증가되며 pblac1이 리그닌 분해에 중요한 역할을 하는 것으로 보여진다. 따라서 백색부후균의 리그닌분해효소 유전자 발현을 조절함으로써 리그닌 분해능이 우수한 균주 개발이 가능하고 목질에탄올 생산 전처리에 효율적으로 이용할 것으로 기대된다.

Keywords

References

  1. Ana, S. 2008. Development and Utilization of Sorghum as a Bioenergy Crop. Genetic Improvement of Bioenergy Crops. 2: 211-248.
  2. Bak, J. S., Ja K. K., and I.-G. Choi. 2009. Fungal Pretreatment of Lignocellulose by Phanerochaete chrysosporium to Produce Ethanol from Rice Straw. Biotechnology and Bioengineering 104(3): 471-482. https://doi.org/10.1002/bit.22423
  3. Chatterjee, S., and P. Karlovsky. 2010. Removal of the Endocrine Disrupter Butyl Benzyl Phthalate from the Environment. Appl. Microbiol. Biotechnol. 87: 61-73. https://doi.org/10.1007/s00253-010-2570-y
  4. Gopalakrishnan, K., J. Van Leeuwen, and R. C. Brown. 2012. Assessing the Environmental Risks and Opportunities of Bioenergy Cropping Sustainable. Bioenergy and Bioproducts Green Energy and Technology. 189-212.
  5. Guo, L.-Q., S.-X. Lin, X.-B. Zheng, Z.-R. Huang, and J.-F. Lin. 2010. Production, Purification and Characterization of a Thermostable Laccase from a Tropical White-rot Fungus. World J. Microbiol. Biotechnol. 27: 731-735.
  6. Jessica M. A., J. A. Gallagher, and I. S. Donnison. 2009. Fermentation Study on Saccharina latissima for Bioethanol Production Considering Variable Pre-treatments. Journal of Applied Phycology 21: 569-574. https://doi.org/10.1007/s10811-008-9384-7
  7. Kumar, P., DM. Barrett, MJ. Delwiche, and P. Stroeve. 2009. Methods for Pretreatment of Lignocell- ulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48: 3713-3719. https://doi.org/10.1021/ie801542g
  8. Lee, J.-W., K.-S. Gwak, J.-Y. Park, M.-J. Park, D.-H. Choi, M. Kwon, and I.-G. Choi. 2007. Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi. The Journal of Microbiology 45(6): 485-491.
  9. Liew, C. Y., A. Husaini, H. Hussain, S. Muid, K. C. Liew, and H. A. Roslan. 2011. Lignin Biodegradation and Ligninolytic Enzyme Studies during Biopulping of Acacia mangium Wood Chips by Tropical White Rot Fungi. World J. Microbiol. Biotechnol. 27: 1457-1468. https://doi.org/10.1007/s11274-010-0598-x
  10. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, and M. Holtzapple. 2005. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresource Technology 96(6): 673-676. https://doi.org/10.1016/j.biortech.2004.06.025
  11. Ryu, S.-H., A.-Y. Lee, and M. k. Kim. 2008. Molecular Characteristics of Two Laccase from the Basidiomycete Fungus, Polyporus brumalis. The Journal of Microbiology 46(1): 62-69. https://doi.org/10.1007/s12275-007-0110-y
  12. Edward M. W. S. and P. C. F. Andre. 2007. Bioenergy Potentials from Forestry in 2050. An Assessment of the Drivers that Determine the Potentials. Climatic Change. 81: 353-390. https://doi.org/10.1007/s10584-006-9163-x
  13. Wan, C. and Y. Li. 2010. Microbial Pretreatment of Corn Stover with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Ethanol Production. Bioresource Technology 101: 6398-6403. https://doi.org/10.1016/j.biortech.2010.03.070
  14. Yang, X., F. Ma, Y. Zeng, H. Yu, C. Xu, and X. Zhang. 2010. Structure Alteration of Lignin in Cornstover Degraded by White-rot Fungus, Irpex lacteus CD2. International Biodeterioration & Biodegradation 64: 119-123. https://doi.org/10.1016/j.ibiod.2009.12.001