DOI QR코드

DOI QR Code

Insight Into Genes Involved in the Production of Extracellular Chitinase in a Biocontrol Bacterium Lysobacter enzymogenes C-3

  • Choi, Hoseong (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Hyun Jung (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Lee, Jin Hee (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Ji Soo (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Park, Seur Kee (Department of Agricultural Biology, Sunchon National University) ;
  • Kim, In Seon (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2012.07.24
  • Accepted : 2012.09.25
  • Published : 2012.12.01

Abstract

The chitinase producing Lysobacter enzymogenes C-3 has previously been shown to suppress plant pathogens in vitro and in the field, but little is known of the regulation of chitinase production, or its role in antimicrobial activity and biocontrol. In this study, we isolated and characterized chitinase-defective mutants by screening the transposon mutants of L. enzymogenes C-3. These mutations disrupted genes involved in diverse functions: glucose-galactose transpoter (gluP), disulfide bond formation protein B (dsbB), Clp protease (clp), and polyamine synthase (speD). The chitinase production of the SpeD mutant was restored by the addition of exogenous spermidine or spermine to the bacterial cultures. The speD and clp mutants lost in vitro antifungal activities against plant fungal pathogens. However, the gluP and dsbB mutants showed similar antifungal activities to that of the wild-type. The growth of the mutants in nutrient rich conditions containing chitin was similar with that of the wild-type. However, growth of the speD and gluP mutants was defective in chitin minimal medium, but was observed no growth retardation in the clp and dsbB mutant on chitin minimal medium. In this study, we identified the four genes might be involved and play different role in the production of extracellular chitinase and antifungal activity in L. enzymogenes C-3.

Keywords

References

  1. Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and $\beta$-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212. https://doi.org/10.1139/w06-119
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current Protocols in Molecular Biology, Wiley, New York.
  3. Bardwell, J. C. A., Lee, J.-O., Jander, G., Martin, N. and Belin, D. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. USA 90:1038-1042. https://doi.org/10.1073/pnas.90.3.1038
  4. Cao, X., Studer, S. V., Wassarman, K., Zhang, Y., Ruby, E. G. and Miyashiro. 2012. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio 3:e00285-11.
  5. Chang, W.-T., Chen, C.-S. and Wang, S.-L. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47:102-108. https://doi.org/10.1007/s00284-002-3955-7
  6. Chattopadhyay, M. K., Tabor, C. W. and Tabor, H. 2009. Polyamines are not required for aerobic growth of Escherichia coli: Preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J. Bacteriol. 191:5549-5552. https://doi.org/10.1128/JB.00381-09
  7. Chet, I., Ordentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85-92. https://doi.org/10.1007/BF00011694
  8. Cohen-Kupiec, R. and Chet, I. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9:270-277. https://doi.org/10.1016/S0958-1669(98)80058-X
  9. Dahiya, N., Tewari, R. and Hoondai, G. S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71:773-782. https://doi.org/10.1007/s00253-005-0183-7
  10. Dutton, R. J., Boyd, D., Berkmen, M. and Bechwith, J. 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105:11933-11938. https://doi.org/10.1073/pnas.0804621105
  11. Essenberg, R. C., Candler, C. and Nida, S. K. 1997. Brucella abortus strain 2308 putative glucose and galactose transporter gene: cloning and characterization. Microbiol. 143:1549-1555. https://doi.org/10.1099/00221287-143-5-1549
  12. Flach, J., Pilet, P. E. and Jolles, P. 1992. What's new in chitinase research? Experimentia 48:701-716. https://doi.org/10.1007/BF02124285
  13. Henrissart, B. and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7:637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  14. Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A. and Martin, J. L. 2009. DSB proteins and bacterial pathogenicity. Nature Rev. Microbiol. 7:215-225. https://doi.org/10.1038/nrmicro2087
  15. Jelsbak, L., Thomsen, L. E., Wallrodt, I., Jensen, P. R. and Olsen, J. E. 2012. Polyamines are required for virulence in Salmonella enterica serotype Typhimurium. PLoS One 7:e36149. https://doi.org/10.1371/journal.pone.0036149
  16. Kamensky, M., Ovadis, M., Chet, I. and Chermin, L. 2003. Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35:323-331. https://doi.org/10.1016/S0038-0717(02)00283-3
  17. Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulations against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382. https://doi.org/10.1007/s10658-007-9227-4
  18. Kim, Y. C., Lee, J. H., Bae, Y.-S., Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly apporaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
  19. Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
  20. Kobayashi, D. Y., Reedy, R. M., Palumbo, J. D., Zhou, J.-M. and Yuen, G. Y. 2005. A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl. Environ. Microbiol. 71:261-269. https://doi.org/10.1128/AEM.71.1.261-269.2005
  21. Kobayashi, D. Y., Reedy, R. M., Bick, J. and Oudemans, P. V. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68:1047-1054. https://doi.org/10.1128/AEM.68.3.1047-1054.2002
  22. Lee, K. Y., Hoe, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S.-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathology J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  23. Li, J.-G., Jiang, Z.-Q., Xu, L.-P., Sun, F.-F. and Guo, J.-H. 2008. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53:931-944. https://doi.org/10.1007/s10526-007-9144-7
  24. Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-$\beta$-glucosidase and an N-acetyl-$\beta$-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398- 405. https://doi.org/10.1094/Phyto-84-398
  25. Nielson, J. S., Larsen, M. H., Lillebaek, E. M. S. L., Bergholz, T. M., Christiansen, M. H. G., Boor, K. J., Wiedmann, M. and Kallipolitis, B. H. 2011. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One 6:e19019. https://doi.org/10.1371/journal.pone.0019019
  26. Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M. and Watanabe, T. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 178:5065-5070. https://doi.org/10.1128/jb.178.17.5065-5070.1996
  27. Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I. and Chernin, L. 2004. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J. Bacteriol. 186:4986-4993. https://doi.org/10.1128/JB.186.15.4986-4993.2004
  28. Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathology J. 21:275-282. https://doi.org/10.5423/PPJ.2005.21.3.275
  29. Reyes-Ramirez, A., Escudero-Abaraca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Microbiol. Sci. 69:M131-M134.
  30. Shah, P. and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68:4-16. https://doi.org/10.1111/j.1365-2958.2008.06126.x
  31. Suzuki, K., Uchiyama, T., Suzuki, M., Nikaidou, N., Regue, M. and Watanabe, T. 2001. LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitinbinding protein, CBP21, in Serratia marcescens 2170. Biosci. Biotechnol. Biochem. 65:338-347. https://doi.org/10.1271/bbb.65.338

Cited by

  1. Direct Regulation of Extracellular Chitinase Production by the Transcription Factor LeClp in Lysobacter enzymogenes OH11 vol.106, pp.9, 2016, https://doi.org/10.1094/PHYTO-01-16-0001-R
  2. OH11 with cheap feedstocks: medium optimization and quantitative determination vol.66, pp.5, 2018, https://doi.org/10.1111/lam.12870