References
-
Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and
$\beta$ -1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212. https://doi.org/10.1139/w06-119 - Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current Protocols in Molecular Biology, Wiley, New York.
- Bardwell, J. C. A., Lee, J.-O., Jander, G., Martin, N. and Belin, D. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. USA 90:1038-1042. https://doi.org/10.1073/pnas.90.3.1038
- Cao, X., Studer, S. V., Wassarman, K., Zhang, Y., Ruby, E. G. and Miyashiro. 2012. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio 3:e00285-11.
- Chang, W.-T., Chen, C.-S. and Wang, S.-L. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47:102-108. https://doi.org/10.1007/s00284-002-3955-7
- Chattopadhyay, M. K., Tabor, C. W. and Tabor, H. 2009. Polyamines are not required for aerobic growth of Escherichia coli: Preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J. Bacteriol. 191:5549-5552. https://doi.org/10.1128/JB.00381-09
- Chet, I., Ordentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85-92. https://doi.org/10.1007/BF00011694
- Cohen-Kupiec, R. and Chet, I. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9:270-277. https://doi.org/10.1016/S0958-1669(98)80058-X
- Dahiya, N., Tewari, R. and Hoondai, G. S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71:773-782. https://doi.org/10.1007/s00253-005-0183-7
- Dutton, R. J., Boyd, D., Berkmen, M. and Bechwith, J. 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105:11933-11938. https://doi.org/10.1073/pnas.0804621105
- Essenberg, R. C., Candler, C. and Nida, S. K. 1997. Brucella abortus strain 2308 putative glucose and galactose transporter gene: cloning and characterization. Microbiol. 143:1549-1555. https://doi.org/10.1099/00221287-143-5-1549
- Flach, J., Pilet, P. E. and Jolles, P. 1992. What's new in chitinase research? Experimentia 48:701-716. https://doi.org/10.1007/BF02124285
- Henrissart, B. and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7:637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
- Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A. and Martin, J. L. 2009. DSB proteins and bacterial pathogenicity. Nature Rev. Microbiol. 7:215-225. https://doi.org/10.1038/nrmicro2087
- Jelsbak, L., Thomsen, L. E., Wallrodt, I., Jensen, P. R. and Olsen, J. E. 2012. Polyamines are required for virulence in Salmonella enterica serotype Typhimurium. PLoS One 7:e36149. https://doi.org/10.1371/journal.pone.0036149
- Kamensky, M., Ovadis, M., Chet, I. and Chermin, L. 2003. Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35:323-331. https://doi.org/10.1016/S0038-0717(02)00283-3
- Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulations against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382. https://doi.org/10.1007/s10658-007-9227-4
- Kim, Y. C., Lee, J. H., Bae, Y.-S., Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly apporaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
- Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
- Kobayashi, D. Y., Reedy, R. M., Palumbo, J. D., Zhou, J.-M. and Yuen, G. Y. 2005. A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl. Environ. Microbiol. 71:261-269. https://doi.org/10.1128/AEM.71.1.261-269.2005
- Kobayashi, D. Y., Reedy, R. M., Bick, J. and Oudemans, P. V. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68:1047-1054. https://doi.org/10.1128/AEM.68.3.1047-1054.2002
- Lee, K. Y., Hoe, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S.-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathology J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
- Li, J.-G., Jiang, Z.-Q., Xu, L.-P., Sun, F.-F. and Guo, J.-H. 2008. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53:931-944. https://doi.org/10.1007/s10526-007-9144-7
-
Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-
$\beta$ -glucosidase and an N-acetyl-$\beta$ -glucosaminidase from Trichoderma harzianum. Phytopathology 84:398- 405. https://doi.org/10.1094/Phyto-84-398 - Nielson, J. S., Larsen, M. H., Lillebaek, E. M. S. L., Bergholz, T. M., Christiansen, M. H. G., Boor, K. J., Wiedmann, M. and Kallipolitis, B. H. 2011. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One 6:e19019. https://doi.org/10.1371/journal.pone.0019019
- Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M. and Watanabe, T. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 178:5065-5070. https://doi.org/10.1128/jb.178.17.5065-5070.1996
- Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I. and Chernin, L. 2004. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J. Bacteriol. 186:4986-4993. https://doi.org/10.1128/JB.186.15.4986-4993.2004
- Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathology J. 21:275-282. https://doi.org/10.5423/PPJ.2005.21.3.275
- Reyes-Ramirez, A., Escudero-Abaraca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Microbiol. Sci. 69:M131-M134.
- Shah, P. and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68:4-16. https://doi.org/10.1111/j.1365-2958.2008.06126.x
- Suzuki, K., Uchiyama, T., Suzuki, M., Nikaidou, N., Regue, M. and Watanabe, T. 2001. LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitinbinding protein, CBP21, in Serratia marcescens 2170. Biosci. Biotechnol. Biochem. 65:338-347. https://doi.org/10.1271/bbb.65.338
Cited by
- Direct Regulation of Extracellular Chitinase Production by the Transcription Factor LeClp in Lysobacter enzymogenes OH11 vol.106, pp.9, 2016, https://doi.org/10.1094/PHYTO-01-16-0001-R
- OH11 with cheap feedstocks: medium optimization and quantitative determination vol.66, pp.5, 2018, https://doi.org/10.1111/lam.12870