Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.07.2012.0115

Insight Into Genes Involved in the Production of Extracellular Chitinase in a Biocontrol Bacterium Lysobacter enzymogenes C-3  

Choi, Hoseong (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Hyun Jung (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Lee, Jin Hee (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Ji Soo (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Park, Seur Kee (Department of Agricultural Biology, Sunchon National University)
Kim, In Seon (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.28, no.4, 2012 , pp. 439-445 More about this Journal
Abstract
The chitinase producing Lysobacter enzymogenes C-3 has previously been shown to suppress plant pathogens in vitro and in the field, but little is known of the regulation of chitinase production, or its role in antimicrobial activity and biocontrol. In this study, we isolated and characterized chitinase-defective mutants by screening the transposon mutants of L. enzymogenes C-3. These mutations disrupted genes involved in diverse functions: glucose-galactose transpoter (gluP), disulfide bond formation protein B (dsbB), Clp protease (clp), and polyamine synthase (speD). The chitinase production of the SpeD mutant was restored by the addition of exogenous spermidine or spermine to the bacterial cultures. The speD and clp mutants lost in vitro antifungal activities against plant fungal pathogens. However, the gluP and dsbB mutants showed similar antifungal activities to that of the wild-type. The growth of the mutants in nutrient rich conditions containing chitin was similar with that of the wild-type. However, growth of the speD and gluP mutants was defective in chitin minimal medium, but was observed no growth retardation in the clp and dsbB mutant on chitin minimal medium. In this study, we identified the four genes might be involved and play different role in the production of extracellular chitinase and antifungal activity in L. enzymogenes C-3.
Keywords
biological control; chitinase; polyamine; transposon mutagenesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chang, W.-T., Chen, C.-S. and Wang, S.-L. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47:102-108.   DOI
2 Chattopadhyay, M. K., Tabor, C. W. and Tabor, H. 2009. Polyamines are not required for aerobic growth of Escherichia coli: Preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J. Bacteriol. 191:5549-5552.   DOI   ScienceOn
3 Chet, I., Ordentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85-92.   DOI
4 Cohen-Kupiec, R. and Chet, I. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9:270-277.   DOI   ScienceOn
5 Dahiya, N., Tewari, R. and Hoondai, G. S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71:773-782.   DOI   ScienceOn
6 Dutton, R. J., Boyd, D., Berkmen, M. and Bechwith, J. 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105:11933-11938.   DOI   ScienceOn
7 Essenberg, R. C., Candler, C. and Nida, S. K. 1997. Brucella abortus strain 2308 putative glucose and galactose transporter gene: cloning and characterization. Microbiol. 143:1549-1555.   DOI   ScienceOn
8 Flach, J., Pilet, P. E. and Jolles, P. 1992. What's new in chitinase research? Experimentia 48:701-716.   DOI   ScienceOn
9 Henrissart, B. and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7:637-644.   DOI   ScienceOn
10 Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A. and Martin, J. L. 2009. DSB proteins and bacterial pathogenicity. Nature Rev. Microbiol. 7:215-225.   DOI   ScienceOn
11 Jelsbak, L., Thomsen, L. E., Wallrodt, I., Jensen, P. R. and Olsen, J. E. 2012. Polyamines are required for virulence in Salmonella enterica serotype Typhimurium. PLoS One 7:e36149.   DOI
12 Kamensky, M., Ovadis, M., Chet, I. and Chermin, L. 2003. Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35:323-331.   DOI   ScienceOn
13 Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulations against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382.   DOI   ScienceOn
14 Kim, Y. C., Lee, J. H., Bae, Y.-S., Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly apporaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450.   DOI   ScienceOn
15 Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555.   DOI   ScienceOn
16 Kobayashi, D. Y., Reedy, R. M., Palumbo, J. D., Zhou, J.-M. and Yuen, G. Y. 2005. A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl. Environ. Microbiol. 71:261-269.   DOI   ScienceOn
17 Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-$\beta$-glucosidase and an N-acetyl-$\beta$-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398- 405.   DOI   ScienceOn
18 Kobayashi, D. Y., Reedy, R. M., Bick, J. and Oudemans, P. V. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68:1047-1054.   DOI   ScienceOn
19 Lee, K. Y., Hoe, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S.-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathology J. 25:344-351.   DOI   ScienceOn
20 Li, J.-G., Jiang, Z.-Q., Xu, L.-P., Sun, F.-F. and Guo, J.-H. 2008. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53:931-944.   DOI
21 Nielson, J. S., Larsen, M. H., Lillebaek, E. M. S. L., Bergholz, T. M., Christiansen, M. H. G., Boor, K. J., Wiedmann, M. and Kallipolitis, B. H. 2011. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One 6:e19019.   DOI   ScienceOn
22 Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M. and Watanabe, T. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 178:5065-5070.   DOI
23 Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I. and Chernin, L. 2004. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J. Bacteriol. 186:4986-4993.   DOI   ScienceOn
24 Suzuki, K., Uchiyama, T., Suzuki, M., Nikaidou, N., Regue, M. and Watanabe, T. 2001. LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitinbinding protein, CBP21, in Serratia marcescens 2170. Biosci. Biotechnol. Biochem. 65:338-347.   DOI   ScienceOn
25 Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathology J. 21:275-282.   DOI   ScienceOn
26 Reyes-Ramirez, A., Escudero-Abaraca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Microbiol. Sci. 69:M131-M134.
27 Shah, P. and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68:4-16.   DOI   ScienceOn
28 Bardwell, J. C. A., Lee, J.-O., Jander, G., Martin, N. and Belin, D. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. USA 90:1038-1042.   DOI   ScienceOn
29 Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and $\beta$-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212.   DOI   ScienceOn
30 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current Protocols in Molecular Biology, Wiley, New York.
31 Cao, X., Studer, S. V., Wassarman, K., Zhang, Y., Ruby, E. G. and Miyashiro. 2012. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio 3:e00285-11.