• Title/Summary/Keyword: bacterial leaf blight pathogen

Search Result 33, Processing Time 0.025 seconds

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

Effect of GlycinecinA on the Control of Bacterial Leaf Spot of Red Pepper and Bacterial Leaf Blight of Rice

  • Jeon, Yong-Ho;Moonjae Cho;Cho, Yong-Sup;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2001
  • Xanthomonas axonopodis pv. glycines 8ra produces a bacteriocin called glycinecinA, which specifically inhibits the growth of bacteria belonging to Xanthomonas species. GlycinecinA was produced by culturing Escherichia coli DH5 containing biosynthetic genes for glycinecinA, and was tested for its control effect against X. vesicatoria on red pepper and X. oryzae pv. oryzae on rice. The bacteriocin activity was much higher in the cell extract than in the supernatant. It reached a maximum level at the stationary phase, ws maintained up to 2 months at room temperature and approximately 10 months at $4^{\circ}$. The optimum concentration of glycinecinA for the control in the greenhouse and in the field was 12,800 AU/ml. In this study, the activity of glycinecinA on rice and red pepper leaves continued for 7-8 days, during which the pathogen populations remained at low levels. Bacterial leaf spot of red pepper and bacterial leaf blight of rice were significantly reduced by the bacteriocin treatments. The control efficacy was as high as, or even higher than, the chemical treatment of copper hydroxide. These results suggest that the bacteriocin is a potential control agent for bacterial diseases.

  • PDF

Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae

  • Ranjani, Pandurangan;Gowthami, Yaram;Gnanamanickam, Samuel S;Palani, Perumal
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.346-359
    • /
    • 2018
  • Xanthomonas oryzae, a bacterial pathogen causing leaf blight disease (BLB) in rice, can cause widespread disease and has caused epidemics globally, resulting in severe crop losses of 50% in Asia. The pathogen is seed-borne and is transmitted through seeds. Thus, control of BLB requires the elimination of the pathogen from seeds. Concern about environment-friendly organic production has spurred improvements in a variety of biological disease control methods, including the use of bacteriophages, against bacterial plant pathogens. The present study explored the potential of bacteriophages isolated from diseased plant leaves and soil samples in killing the bacterial pathogen in rice seeds. Eight different phages were isolated and evaluated for their bacteriolytic activity against different pathogenic X. oryzae strains. Of these, a phage designated ${\varphi}XOF4$ killed all the pathogenic X. oryzae strains and showed the broadest host range. Transmission electron microscopy of ${\varphi}XOF4$ revealed it to be a tailed phage with an icosahedral head. The virus was assigned to the family Siphoviridae, order Caudovirales. Seedlings raised from the seeds treated with $1{\times}10^8pfu/ml$ of ${\varphi}XOF4$ phage displayed reduced incidence of BLB disease and complete bacterial growth inhibition. The findings indicate the potential of the ${\varphi}XOF4$ phage as a potential biological control agent against BLB disease in rice.

Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease

  • Cheng, Jinhua;Jaiswal, Kumar Sagar;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • An endophytic bacterial strain was isolated from kimchi, a Korean traditional fermented Brassica campestris and identified as Bacillus subtilis MJMP2 based on the 16S rRNA sequence. This strain showed strong antagonistic activity against Xanthomonas oryzae pv. oryzae (Xoo) KACC10331, the pathogen of bacterial rice blight disease, as well as activity against some other rice phytopathogenic fungi. The active compound was purified through size-exclusion chromatography and preparative High-performance liquid chromatography. The molecular weight was determined as m/z 1043 by mass spectroscopy, which is identical to that of iturin A. Furthermore, a crude extract from the culture supernatant of Bacillus subtilis MJMP2 showed inhibitory activity against rice blight disease in both a rice leaf explant assay and a pot assay. The crude extract also enhanced the length of roots of Arabidopsis thaliana. These results suggest that the strain Bacillus subtilis MJMP2 could be used as a biological agent to control rice blight disease.

Additive Main Effects and Multiplicative Interaction Analysis of Host-Pathogen Relationship in Rice-Bacterial Blight Pathosystem

  • Nayak, D.;Bose, L.K.;Singh, S.;Nayak, P.
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.337-351
    • /
    • 2008
  • Host-pathogen interaction in rice bacterial blight pathosystem was analyzed for a better understanding of their relationship and recognition of stable pathogenicity among the populations of Xanthomonas oryzae pv. oryzae. A total number of 52 bacterial strains isolated from diseased leaf samples collected from 12 rice growing states and one Union Territory of India, were inoculated on 16 rice varieties, each possessing known genes for resistance. Analysis of variance revealed that the host genotypes(G) accounted for largest(78.4%) proportion of the total sum of squares(SS), followed by 16.5% due to the pathogen isolates(I) and 5.1% due to the $I{\times}G$ interactions. Application of the Additive Main effects and Multiplicative Interaction(AMMI) model revealed that the first two interaction principal component axes(IPCA) accounted for 66.8% and 21.5% of the interaction SS, respectively. The biplot generated using the isolate and genotypic scores of the first two IPCAs revealed groups of host genotypes and pathogen isolates falling into four sectors. A group of five isolates with high virulence, high absolute IPCA-1 scores, moderate IPCA-2 scores, low AMMI stability index '$D_i$' values and minimal deviations from additive main effects displayed in AMMI biplot as well as response plot, were identified as possessing stable pathogenicity across 16 host genotypes. The largest group of 27 isolates with low virulence, small IPCA-1 as well as IPCA-2 scores, low $D_i$ values and minimal deviations from additive main effect predictions, possessed stable pathogenicity for low virulence. The AMMI analysis and biplot display facilitated in a better understanding of the host-pathogen interaction, adaptability of pathogen isolates to specific host genotypes, identification of isolates showing stable pathogenicity and most discriminating host genotypes, which could be useful in location specific breeding programs aiming at deployment of resistant host genotypes in bacterial blight disease control strategies.

Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam

  • Thu Thi Hieu Nguyen;Cristina Bez;Iris Bertani;Minh Hong Nguyen;Thao Kim Nu Nguyen;Vittorio Venturi;Hang Thuy Dinh
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.225-232
    • /
    • 2024
  • The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

PCR-Based Assay for Rapid and Specific Detection of the New Xanthomonas oryzae pv. oryzae K3a Race Using an AFLP-Derived Marker

  • Song, Eun-Sung;Kim, Song-Yi;Noh, Tae-Hwan;Cho, Heejung;Chae, Soo-Cheon;Lee, Byoung-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.732-739
    • /
    • 2014
  • We describe the development of a polymerase chain reaction method for the rapid, precise, and specific detection of the Xanthomonas oryzae pv. oryzae (Xoo) K3a race, the bacterial blight pathogen of rice. The specific primer set was designed to amplify a genomic locus derived from an amplified fragment length polymorphism specific for the K3a race. The 1,024 bp amplicon was generated from the DNA of 13 isolates of Xoo K3a races out of 119 isolates of other races, pathovars, and Xanthomonas species. The assay does not require isolated bacterial cells or DNA extraction. Moreover, the pathogen was quickly detected in rice leaf 2 days after inoculation with bacteria and at a distance of 8 cm from the rice leaf 5 days later. The results suggest that this PCR-based assay will be a useful and powerful tool for the detection and identification of the Xoo K3a race in rice plants as well as for early diagnosis of infection in paddy fields.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Screening and Identification of Antimicrobial Compounds from Streptomyces bottropensis Suppressing Rice Bacterial Blight

  • Park, Sait-Byul;Lee, In-Ae;Suh, Joo-Won;Kim, Jeong-Gu;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1236-1242
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating pathogen to Oryza sativa and has been shown to cause bacterial blight. Two bioactive compounds showing antimicrobial activities against Xoo strain KACC 10331 were isolated from a Streptomyces bottropensis strain. The ethyl acetate extract was fractionated on a Sephadex LH-20 column, and then purified by preparative HPLC. The purified compounds were identified as bottromycin A2 and dunaimycin D3S by HR/MS and $^1H$ NMR analyses. The MIC value against Xoo and the lowest concentration still capable of suppressing rice bacterial blight were 2 ${\mu}g$/ml and 16 ${\mu}g$/ml for bottromycin A2, and 64 ${\mu}g$/ml and 0.06 ${\mu}g$/ml for dunaimycin D3S, respectively. These two compounds were shown to exert different bioactivities in vitro and in rice leaf explants.