압출성형 공정변수에 따른 옥수수전분 팽화물의 당화특성

Saccharification Characteristics of Extruded Corn Starch at Different Process Parameters

  • Lee, Kyu-Chul (Department of Food Science and Technology, Kongju National University) ;
  • Kim, Yeon-Soo (Department of Food Science and Technology, Kongju National University) ;
  • Ryu, Gi-Hyung (Department of Food Science and Technology, Kongju National University)
  • 투고 : 2010.11.30
  • 심사 : 2011.04.27
  • 발행 : 2011.05.30

초록

본 실험은 압출성형을 통한 저DE덱스트린 제조공정을 확립하기 위해서 수분함량 25, 35% 배럴온도 100, $120^{\circ}C$, 스크루 회전속도 150, 250 rpm에서 압출성형한 전분을 알 파아밀라아제로 당화시켰을 때 당화특성을 연구하였다. 수 분용해지수는 원료전분 수분함량이 25%로 감소할 경우 증 가되었으며, 수분흡착지수도 수분의 감소와 함께 전체적으 로 증가하였다. 환원당함량의 경우 수분함량이 낮고 배럴온 도 높을수록 증가되었다. 120 분간 당화 후 DE 63.8로 높 게 나타났다. 비기계적 에너지 투입량(SME)의 증가와 함께 수분용해도는 증가하는 경향이었다. 또한 수분함량의 감소 와 함께 비기계적 에너지 투입량과 수분용해도는 증가하였 다. 페이스트점도는 원료전분의 수분이 낮고, 스크루 회전 속도가 증가할수록 전분사슬의 절단에 따라 저온최고점도 가 감소하는 경향을 보였다. 초기반응속도는 수분함량이 25%로 낮고 배럴온도 $120^{\circ}C$, 스크루 회전수 250 rpm에서 $2.26{\times}10^{-3}mmol/mL{\cdot}min$로 가장 높았다. 시중 호화전분 $1.83{\times}10^{-3}mmol/mL{\cdot}min$에 비해서도 높은 결과를 보였다. 당화속도상수는 히구치모델을 응용하였으며, 수분함량이 낮 고 배럴온도가 $120^{\circ}C$일 때 전체적으로 높게 나타났다. 본 실험에서 초기반응속도, 당화속도상수, 당화수율 등을 고려 할 때, 최적조건은 수분함량 25%, 배럴온도 $120^{\circ}C$, 스크루 회전속도 250 rpm이었다.

The aim of this study was to determine the effects of different extrusion conditions on the saccharification characteristics( initial reaction velocity, reaction rate constant, yield) of extruded corn starch. Extruded corn starch-water slurries were mixed with alpha-amylase for the enzymatic saccharification. The saccharification yield of extruded corn starch was high at lower feed moisture content and higher barrel temperature. The solubility of extrudates increased with increase in the SME input which increased with increase in the feed moisture content. Starch hydrolysates having DE 63.8 was obtained after 2 hr reaction. The initial reaction velocity of the extrudate slurry with alpha-amylase was higher with decrease in the feed moisture content. The initial reaction velocity of extruded corn starch was the highest ($2.26{\times}10^{-3}mmol/mL{\cdot}min$) at 25% feed moisture content and $120^{\circ}C$ barrel temperature, 250 rpm screw speed. The pregelatinized starch was $1.83{\times}10^{-3}mmol/mL{\cdot}min$ as a control. Reaction rate constant was a similar trend to initial reaction velocity.

키워드

참고문헌

  1. AACC. 1983. Approved Method of the AACC. 10th ed. Method 56-20. American Association of Cereal Chemists, St. Paul, MN, USA.
  2. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington DC, USA. pp. 8-35.
  3. Baks T, Kappen FHJ, Janssen AEM, Remko MB. 2008. Towards an optimal process for gelatinization and hydrolysis of highly concentrated starch-water mixtures with alpha-amylase from B.licheniformis. J. Cereal Sci. 47: 214-225. https://doi.org/10.1016/j.jcs.2007.03.011
  4. Ben-Gera Y, Rokey GJ, Smith OB. 1983. Extrusion cooking of grains for ethanol production. J. Food Sci. 2: 177-87.
  5. Chang YK, El-Dash AA. 2003. Extrusion-cooking of cassava starch as pre-treatment for its simultaneous saccharification and fermentation for ethanol production. Acta Alimentaria 32: 219-235. https://doi.org/10.1556/AAlim.32.2003.3.2
  6. Colonna P, Mercier C. 1983. Macromolecular modifications of manioc starch components by extrusion-cooking with and without lipids. Carbohyd. Polym. 3: 87-108. https://doi.org/10.1016/0144-8617(83)90001-2
  7. Darnoko D, Artz EW. 1988. Twin-screw extrusion as a continuous pre-treatment process for the enzymatic hydrolysis of cassava. J. Food. Sci. 53: 1792-1799. https://doi.org/10.1111/j.1365-2621.1988.tb07844.x
  8. Govindasamy S, Campanella OH, Oates CG. 1997. Enzymatic hydrolysis of sago starch in a twin-screw extruder. J. Food Eng. 32: 403-426. https://doi.org/10.1016/S0260-8774(97)00017-4
  9. Grafelman DD, Meagher MM. 1995. Liquefaction of starch by a single-screw extruder and post extrusion static-mixer reactor. J. Food Eng. 24: 529-542. https://doi.org/10.1016/0260-8774(95)90768-7
  10. Hakulin S, Linko P, Seiler K, Seibel W. 1983. Enzymatic conversion of starch in twin-screw extruder. Starch-Starke, 35: 411-414. https://doi.org/10.1002/star.19830351203
  11. Han JY, Yang HJ, Lee YS, Ryu GH. 2008. Studies on characteristics of physicochemical properties and saccharification of extruded white ginseng. Food Eng. Prog. 12: 36-43.
  12. Happer JM. 1989. Food extruders and their application. In: Extrusion Cooking. Mercier C, Linko P. Harper JM (eds). AACC, St. Paul, MN. pp. 91-155.
  13. Higuchi T. 1963. Mechanism of sustained action medication theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm Sci. 52: 1145-1149. https://doi.org/10.1002/jps.2600521210
  14. Jung HC, Chung OR. 1997. Simulation for improving the process of Korean traditional rice-yeotplant. Food Eng. Prog. 1: 29-57.
  15. Kim HS, Kang YJ. 1994. Optimal condition of saccharification for a traditional malt syrup in Cheju. Korean J. Food Sci. Technol. 26: 125-129.
  16. Korn, SR, Happer JM. 1982 Extrusion of corn for ethanol fermentation. Biotechnol. Lett. 4: 417-422. https://doi.org/10.1007/BF01134588
  17. KFDA. 2007. Korea Food and Drug Administration. Food Code. Munyoungsa. Seoul, Korea. p. 56-57.
  18. Linko P, Hakulin S, Linko YY. 1984. Extrusion cooking of barley starch for the production of glucose syrup and ethanol. J. Cereal Sci. 1: 275-284.
  19. Linko P, Linko YY, Olkku J. 1983. Extrusion cooking and bioconversions. J. Food Eng. 2: 243-257. https://doi.org/10.1016/0260-8774(83)90014-6
  20. Meuser F, Wiedmann W. 1989. Extrusion plant design. In: Extrusion Cooking. AACC. St. Paul, MN, USA. pp. 91-155.
  21. Miller GL. 1959. Use of dinitrosalicylic reagent for determination of reducing roups. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Norman BE. 1980. New developments in starch syrup technology. In: Enzymes and Food Processing. Birch GG, Blakerbrough N, Parker KJ (eds). Appl. Sci. Pub. Ltd., Ripple Road, UK. pp. 15-50.
  23. Reinikainen P, Suortti T, Oikku J, Maikki Y, Linko P. 1986. Extrusion cooking in enzymatic liquefaction of wheat starch. Starch-Starke 38: 20-26. https://doi.org/10.1002/star.19860380106
  24. Roussel L, Vieille A, Billet I, Cheftel JC. 1991. Sequential heat gelatinization and enzymatic hydrolysis of corn starch in an extrusion reactor: Optimisation for a maximum dextrose. LWT. 24: 449-458.
  25. RVA manual. 1995. RVA-3 series operation manual using dos thermocline software. Newport Scientific, Sydney, Australia.
  26. Ryu GH, Walker CE. 1994. The effects of extrusion conditions on the physical properties of flour extrudate. Starch-Starke. 47: 33-36.
  27. Solichien BW, Ryu GH, Kim DS. 2003. Preliminary study of enzymatic hydrolysis of corn starch in twin-screw extruder. 70th Annual Conference in Korea Soc. Food Sic. Technol. p. 204.
  28. Solihin BW, Kim MH, Im BS, Cha JY, Ryu GH. 2007. Effects of feed moisture content on enzymatic hydrolysis of corn starch in twin-screw extruder and saccharification of the dried extrudates. Food Sci. Biotechnol. 16: 381-385.
  29. Yoo GH. 1975. Studies on the manufacturing method Korean jelly and caramelization using lycories. J. Korean Soc. Food Sci. Nutr. 4: 67-133.