DOI QR코드

DOI QR Code

Effects of Surface Roughness on the Thermal Emissivity of IG-11 Graphite for Nuclear Reactor

IG-11 원자로용 흑연의 열방사 특성에 미치는 표면 거칠기의 영향

  • Roh, Jae-Seung (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Seo, Seung-Kuk (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim, Suk Hwan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Chi, Se-Hwan (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Eung-Seon (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Hye Sung (Dept. of Nano Fusion Technology, Pusan National University)
  • 노재승 (금오공과대학교 신소재시스템공학부) ;
  • 서승국 (금오공과대학교 신소재시스템공학부) ;
  • 김석환 (금오공과대학교 신소재시스템공학부) ;
  • 지세환 (한국원자력연구소) ;
  • 김응선 (한국원자력연구소) ;
  • 김혜성 (부산대학교 나노융합기술과)
  • Received : 2011.03.09
  • Published : 2011.07.25

Abstract

This paper reports the relationship between the surface roughness and thermal emissivity of graphite (IG-11) in nuclear reactors. The roughness was controlled by changing the oxidization time, resulting in 0, 6, and 11% losses of mass. The levels of roughness were 0.40, 0.72 and 1.09${\mu}m$ for the weight loss of 0, 6 and 11%, respectively. The binders and graphite fillers were found to have sequentially oxidized with a higher thermal emission for the highly oxidized sample, but with a lower emission when measured at a higher temperature. Our study suggests a method for predicting the thermal emission rate of graphite in a nuclear reactor based on roughness measurement.

Keywords

References

  1. B. C. Mitchell, J. Smart, S. L. Fok, and B. J. Marsden, J. Nucl. Mater. 322, 126 (2003). https://doi.org/10.1016/S0022-3115(03)00322-2
  2. A. Kurumada, T. Oku, K. Harada, K. Kawamata, S. Sato, T. Hiraoka, and B. McEaney, Carbon 35, 1157 (1997). https://doi.org/10.1016/S0008-6223(97)00088-2
  3. B. J. Marsden, IAEA Technical Committee Meeting, p.124, Palo Alto, California, (2000).
  4. H. J. Li, Q. G. Fu, J. F. Huang, X. R. Zeng, and K. Z. Li, Carbon Letters 6, 71 (2005).
  5. W. K. Choi, B. J. Kim, S. H. Chi, and S. J. Park, Carbon Letters 10, 239 (2009). https://doi.org/10.5714/CL.2009.10.3.239
  6. Idaho National Engineering & Environmental Laboratory, Winter ANS Meeting, Washington, D.C. (2002).
  7. T. Chunhe and G. Jie, J. Nucl. Mater. 224, 103 (1995). https://doi.org/10.1016/0022-3115(95)00031-3
  8. M. Rainer, H. K. Hinssen, and K. Kerstin, Nucl. Eng. Des. 227, 281 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.001
  9. A. Ono, 8th Symposium on Thermophysics, Am Soc Mech Eng, New York, 2, 133 (1982).
  10. S. Glasstone and A. Sesonske, Nuclear Reactor Engineering: Reactor Systems Engineering, 4th ed., p.2, Chapman & Hall, New York (1994).
  11. J. Zuecoa and F. Alhamab, J. Quan Spectro & Rad Tran 101, 73 (2006). https://doi.org/10.1016/j.jqsrt.2005.11.005
  12. M. Bal, H. Pinkerton, and A. J. L. Harris, J. Volcanol Geoth. Res. 173, 148 (2008). https://doi.org/10.1016/j.jvolgeores.2008.01.004
  13. D. Especel and S. Matte, Infrared. Phys. Tech. 37, 777 (I996). https://doi.org/10.1016/S1350-4495(96)00017-5
  14. J. Yi, X. D. He, Y. Sun, and Y. Li, Appl. Surf. Sci. 253, 4361 (2007). https://doi.org/10.1016/j.apsusc.2006.09.063
  15. S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, and S. Kumar, Carbon 45, 2417 (2007). https://doi.org/10.1016/j.carbon.2007.06.057
  16. S. K. Seo, J. S. Roh, E. S. Kim, S. H. Chi, S. H. Kim, and S. W. Lee, Carbon Letters 10, 300 (2009) https://doi.org/10.5714/CL.2009.10.4.300
  17. E. L. Fuller and J. M. Okoh, J. Nucl. Mater. 240, 241 (1997). https://doi.org/10.1016/S0022-3115(96)00462-X
  18. M. Etoa, T. Ishiia, T. Inagakib, and Y. Okamotoc, Carbon 40, 285 (2002). https://doi.org/10.1016/S0008-6223(01)00094-X
  19. L. Xiaowei, Y. Suyuan, S. Xuanyu, and H. Shuyan, Nucl. Eng. Des. 235, 2261 (2005). https://doi.org/10.1016/j.nucengdes.2005.05.001
  20. J. B. Tomlinson, J. J. Freeman, K. S. W. Sing, and C. R. Theocharis, Carbon 33, 789 (1995). https://doi.org/10.1016/0008-6223(95)00006-Y
  21. P. L. Walker Jr., F. Rusinko Jr. and L. G. Austine, Advanced in Catlysis, Eds. D. D. Eley, P. E. Selwood, and P. B. Weisz, 11, 133, Academic press, New York (1959).
  22. C. D. Wen and I. Mudawar, Int. J. Heat. Mass. Tran. 49, 4279 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.037