Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.7.557

Effects of Surface Roughness on the Thermal Emissivity of IG-11 Graphite for Nuclear Reactor  

Roh, Jae-Seung (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
Seo, Seung-Kuk (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
Kim, Suk Hwan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
Chi, Se-Hwan (Korea Atomic Energy Research Institute (KAERI))
Kim, Eung-Seon (Korea Atomic Energy Research Institute (KAERI))
Kim, Hye Sung (Dept. of Nano Fusion Technology, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.7, 2011 , pp. 557-564 More about this Journal
Abstract
This paper reports the relationship between the surface roughness and thermal emissivity of graphite (IG-11) in nuclear reactors. The roughness was controlled by changing the oxidization time, resulting in 0, 6, and 11% losses of mass. The levels of roughness were 0.40, 0.72 and 1.09${\mu}m$ for the weight loss of 0, 6 and 11%, respectively. The binders and graphite fillers were found to have sequentially oxidized with a higher thermal emission for the highly oxidized sample, but with a lower emission when measured at a higher temperature. Our study suggests a method for predicting the thermal emission rate of graphite in a nuclear reactor based on roughness measurement.
Keywords
carbon and graphite; scanning electron microscopy (SEM); thermal emissivity; surface roughness; isotropic nuclear graphite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 B. C. Mitchell, J. Smart, S. L. Fok, and B. J. Marsden, J. Nucl. Mater. 322, 126 (2003).   DOI   ScienceOn
2 A. Kurumada, T. Oku, K. Harada, K. Kawamata, S. Sato, T. Hiraoka, and B. McEaney, Carbon 35, 1157 (1997).   DOI   ScienceOn
3 B. J. Marsden, IAEA Technical Committee Meeting, p.124, Palo Alto, California, (2000).
4 H. J. Li, Q. G. Fu, J. F. Huang, X. R. Zeng, and K. Z. Li, Carbon Letters 6, 71 (2005).
5 W. K. Choi, B. J. Kim, S. H. Chi, and S. J. Park, Carbon Letters 10, 239 (2009).   DOI   ScienceOn
6 Idaho National Engineering & Environmental Laboratory, Winter ANS Meeting, Washington, D.C. (2002).
7 T. Chunhe and G. Jie, J. Nucl. Mater. 224, 103 (1995).   DOI   ScienceOn
8 M. Rainer, H. K. Hinssen, and K. Kerstin, Nucl. Eng. Des. 227, 281 (2004).   DOI   ScienceOn
9 A. Ono, 8th Symposium on Thermophysics, Am Soc Mech Eng, New York, 2, 133 (1982).
10 S. Glasstone and A. Sesonske, Nuclear Reactor Engineering: Reactor Systems Engineering, 4th ed., p.2, Chapman & Hall, New York (1994).
11 J. Zuecoa and F. Alhamab, J. Quan Spectro & Rad Tran 101, 73 (2006).   DOI   ScienceOn
12 M. Bal, H. Pinkerton, and A. J. L. Harris, J. Volcanol Geoth. Res. 173, 148 (2008).   DOI   ScienceOn
13 D. Especel and S. Matte, Infrared. Phys. Tech. 37, 777 (I996).   DOI   ScienceOn
14 J. Yi, X. D. He, Y. Sun, and Y. Li, Appl. Surf. Sci. 253, 4361 (2007).   DOI   ScienceOn
15 S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, and S. Kumar, Carbon 45, 2417 (2007).   DOI   ScienceOn
16 S. K. Seo, J. S. Roh, E. S. Kim, S. H. Chi, S. H. Kim, and S. W. Lee, Carbon Letters 10, 300 (2009)   DOI   ScienceOn
17 E. L. Fuller and J. M. Okoh, J. Nucl. Mater. 240, 241 (1997).   DOI   ScienceOn
18 M. Etoa, T. Ishiia, T. Inagakib, and Y. Okamotoc, Carbon 40, 285 (2002).   DOI   ScienceOn
19 L. Xiaowei, Y. Suyuan, S. Xuanyu, and H. Shuyan, Nucl. Eng. Des. 235, 2261 (2005).   DOI   ScienceOn
20 J. B. Tomlinson, J. J. Freeman, K. S. W. Sing, and C. R. Theocharis, Carbon 33, 789 (1995).   DOI   ScienceOn
21 P. L. Walker Jr., F. Rusinko Jr. and L. G. Austine, Advanced in Catlysis, Eds. D. D. Eley, P. E. Selwood, and P. B. Weisz, 11, 133, Academic press, New York (1959).
22 C. D. Wen and I. Mudawar, Int. J. Heat. Mass. Tran. 49, 4279 (2006).   DOI   ScienceOn