• Title/Summary/Keyword: scanning electron microscopy (SEM)

Search Result 2,598, Processing Time 0.03 seconds

Analysis of Ceramics Using Scanning Electron Microscopy (주사전자현미경을 활용한 세라믹의 분석)

  • Lee, Sujeong
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • A ceramic is used as a key material in various fields. Accordingly, the use of scanning electron microscopy is increased for the purpose of evaluating the reliability and defects of advanced ceramic materials. The scanning electron microscope is developed to overcome the limitations of optical microscopy and uses accelerated electrons for imaging. Various signals such as SE, BSE and characteristic X-rays provide useful information about the surface microstructure of specimens and, the content and distribution of chemical components. The development of electron guns, such as FEG, and the improved lens system combined with the advanced in-lens detectors and STEM-in-SEM system have expanded the applications of SEM. Automated SEM-EDS analysis also greatly increases the amount of data, enabling more statistically reliable results. In addition, X-ray CT, XRF, and WDS, which are installed in scanning electron microscope, have transformed SEM a more versatile analytical equipment. The performance and specifications of the scanning electron microscope to evaluate ceramics were reviewed and the selection criteria for SEM analysis were described.

The development of scanning electron microscopy (전자현미경 개발)

  • Oh H. J.;Chang D. Y.;Yang H. N.;Kim D. H.;Park M, J.;Shim C. H.;Kim C. S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.15-18
    • /
    • 2005
  • We have designed and fabricated a thermal scanning electron microscopy. It includes an electron source, two condenser lenses, one objective lens, a scanning coil and a stigmator coil for focusing in column and also have a secondary electron detector for constructing the image in chamber with a high vacuum condition and control part for operating the SEM. Especially, in order for us to find out the optical characteristics, our attention and studies have been concentrated on the effects of two condenser lenses and one objective lens for high resolution with SEM. Finally, we developed a high resolution thermal scanning electron microscopy.

  • PDF

Realization for Each Element for capturing image in Scanning Electron Microscopy (주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

Methanol fixation for scanning electron microscopy of plants

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.10.1-10.6
    • /
    • 2020
  • Plant specimens for scanning electron microscopy (SEM) are commonly treated using standard protocols. Conventional fixatives consist of toxic chemicals such as glutaraldehyde, paraformaldehyde, and osmium tetroxide. In 1996, methanol fixation was reported as a rapid alternative to the standard protocols. If specimens are immersed in methanol for 30 s or longer and critical-point dried, they appear to be comparable in preservation quality to those treated with the chemical fixatives. A modified version that consists of methanol fixation and ethanol dehydration was effective at preserving the tissue morphology and dimensions. These solvent-based fixation and dehydration protocols are regarded as rapid and simple alternatives to standard protocols for SEM of plants.

Water Wetting Observation on a Superhydrophobic Hairy Plant Leaf Using Environmental Scanning Electron Microscopy

  • Yoon, Sun Mi;Ko, Tae-Jun;Oh, Kyu Hwan;Nahm, Sahn;Moon, Myoung-Woon
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.201-205
    • /
    • 2016
  • Functional surfaces in nature have been continuously observed because of their ability to adapt to the environment. To this end, methods such as scanning electron microscopy (SEM) have been widely used, and their wetting functions have been characterized via environmental SEM. We investigated the superhydrophobic hairy leaves of Pelargonium tomentosum, i.e., peppermint-scented geranium. Their surface features and wettability were studied at multiple-scales, i.e., macro-, micro-, and sub-micro scales. The surfaces of the investigated leaves showed superhydrophobicity at the macro-, and micro-scales. The wetting or condensing behavior was studied for molecule-size water vapors, which easily adhered to the hairy surface owing to their significantly lower size in comparison to that of the surface.

Some living eukaryotes during and after scanning electron microscopy

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Electron microscopy (EM) is an essential imaging method in biological sciences. Since biological specimens are exposed to radiation and vacuum conditions during EM observations, they die due to chemical bond breakage and desiccation. However, some organisms belonging to the taxa of bacteria, fungi, plants, and animals (including beetles, ticks, and tardigrades) have been reported to survive hostile scanning EM (SEM) conditions since the onset of EM. The surviving organisms were observed (i) without chemical fixation, (ii) after mounting to a precooled cold stage, (iii) using cryo-SEM, or (iv) after coating with a thin polymer layer, respectively. Combined use of these techniques may provide a better condition for preservation and live imaging of multicellular organisms for a long time beyond live-cell EM.

Cryo-SEM Methodology of Arabidopsis thaliana Stem Using High-Pressure Freezing (고압동결고정을 이용한 애기장대 줄기의 cryo-SEM 분석법)

  • Choi, Yun-Joung;Lee, Kyung-Hwan;Je, A-Reum;Chae, Hee-Su;Jang, Ji-Hoon;Lee, Eun-Ji;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.111-114
    • /
    • 2012
  • The scanning electron microscopy is an ideal technique for examining plant surface at high resolution. Most hydrate samples, however, must be fix and dehydrate for observation in the scanning electron microscope. Because the microscopes operate under high vacuum, most specimens, especially biological samples, cannot withstand water removal by the vacuum system without morphological distortion. Cryo-techniques can observe in their original morphology and structure without various artifacts from conventional sample preparation. Rapid cooling is the method of choice for preparing plant samples for scanning electron microscopy in a defined physiological state. As one of cryo-technique, high-pressure freezing allows for fixation of native non-pretreated samples up to $200{\mu}M$ thick and 2 mm wide with minimal or no ice crystal damage for the freezing procedure. In this study, we could design to optimize structural preservation and imaging by comparing cryo-SEM and convention SEM preparation, and observe a fine, well preserved Arabidopsis stem's inner ultrastructure using HPF and cryo-SEM. These results would suggest a useful method of cryo-preparation and cryo-SEM for plant tissues, especially intratubule and vacuole rich structure.

Scanning Electron Microscopy Studies of Saccharomyces cerevisiae Structural Changes by High Hydrostatic Pressure Treatment

  • Bang, Woo-Suk;Swanson, Barry G.
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1102-1105
    • /
    • 2008
  • The structural change and leakage of cellular substances of Saccharomyces cerevisiae attributed by high hydrostatic pressure (HHP) treatment were observed with scanning electron microscopy (SEM). S. cerevisiae (ATCC16664) was inoculated in apple juice for 10 min at $23^{\circ}C$ and the apple juice treated at 138, 207, 276, 345, and 414 MPa pressure for 30 sec at $23^{\circ}C$. Increased of roughness, elongation, wrinkling, and pores on yeast cell surfaces, the yeast cell walls were severely damaged by HHP treatment from 276 to 414 MPa. Inactivation of S. cerevisiae by HHP is dependent on structural changes on the cell walls observed with SEM.