• Title/Summary/Keyword: thermal emissivity

Search Result 128, Processing Time 0.035 seconds

The Effect of Surface Roughness on Measuring Thermal Emissivity (열 방사율 측정시 표면거칠기의 영향)

  • 오기수;배신철
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.65-70
    • /
    • 2003
  • Thermal emissivity is generally affected by surface situation of material such as roughness. In this study, the effect of surface roughness on measuring thermal emissivity is experimented. And emissivity measurement method and equipment using hemisperical mirror is also reviewed. As the result of this research, thermal emissivity increased as long as increasing surface roughness. So, surface roughness is a essential check point when we measure the emissivity.

A Study on Transparent Polymer Composite Films with High Emissivity (고 열방사 투명 고분자 합성막 연구)

  • Kim, Jeong-Hwan;Shin, Dong-Kyun;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.29-33
    • /
    • 2013
  • We have fabricated transparent polymer composite films with high thermal emissivity, which can be used for heat dissipation of transparent electronics. PMMA (poly(methyl methacrylate)) solution with high transparency and thermal emissivity is mixed with various fillers (carbon nanotubes (CNTs), aluminum nitride (AlN), or silicon carbide (SiC)) with high thermal conductivity. We have achieved the thermal emissivity as high as 0.94 by the addition of CNTs. Compared with the PMMA film on glass, however, the addition of AlN or SiC is shown to rather decrease the thermal emissivity. It is also observed that the thickness of the PMMA film does not affect its thermal emissivity. To avoid any degradation of the thermal conductivity, therefore, the PMMA film thickness is desirable to be $1{\mu}m$. There also exists a tradeoff between the optical transmittance and thermal conductivity on the selection of the amount of fillers.

Thermal Emissivity of Nuclear Graphite as a Function of Its Oxidation Degree (1) -Effects of Density, Porosity, and Microstructure-

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.225-229
    • /
    • 2009
  • Thermal emissivity of commercial nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) following changes in oxidation degrees were examined. Specimens were oxidized to 0%, 5%, and 10% in air flow of 5l/min at $600^{\circ}C$ using a furnace, and the thermal emissivities were measured using an infrared spectrum analyzer. The measuring temperatures for the thermal emissivity were $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ $500^{\circ}C$. Also density and porosity of the specimens were observed to compare with thermal emissivity. Results showed that emissivity increased with oxidation, and the 10% oxidized NBG-18 showed the highest emissivity (0.890) which value is larger for 24% than the value of as-received specimen. Investigation of factors affecting the emissivity revealed that increases in the surface roughness and porosity due to oxidation were responsible for the increase in emissivity after oxidation.

Measurement of the Surface Emissivity of the LED Lighting Module (LED 조명 모듈 표면의 방사율 측정에 관한 연구)

  • Park, Jin-Sung;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.493-501
    • /
    • 2013
  • LED lighting is sensitive because it made by semiconductor. So it has been researched about radiation of heat technologies for a long time. In addition, measurement and assessment a radiation of heat also conducted. It is necessary to get a date of accuracy temperature on the board after LED driven for measuring Junction temperature of the LED Lighting. For this research, we use 5 chip which is 4 W power on top of LED lighting board made by aluminum. Thermal camera effects to emissivity depending on material and property of the surface in LED board because it determines thermal energy which emitted from material surface. it is not only thermal camera has not a standard about emissivity. It has an error of temperature when emissivity was measured by thermal camera. we confirmed that emissivity and reflected temperature depending on color and quality of the surface throughout experiment.

Correlation Between the Porosity and the Thermal Emissivity as a Function of Oxidation Degrees on Nuclear Graphite IG-11 (원자로급 흑연 IG-11의 산화율에 따른 기공도와 열방사율과의 관계)

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Gyeong-Hwa;Chi, Se-Hwan;Kim, Eung-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.645-649
    • /
    • 2008
  • Graphite for the nuclear reactor is used to the moderator, reflector and supporter in which fuel rod inside of nuclear reactor. Recently, there are many researches has been performed on the various characteristics of nuclear graphite, however most of them are restricted to the structural and the mechanical properties. Therefore we focused on the thermal property of nuclear graphite. This study investigated the thermal emissivity following the oxidation degree of nuclear graphite with IG-11 used as a sample. IG-11 was oxidized to 6% and 11% in air at 5 l/min at $600^{\circ}C$. The porosity and thermal emissivity of the sample were measured using a mercury porosimeter and by an IR method, respectively. The thermal emissivity of an oxidized sample was measured at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. The porosity of the oxidized samples was found to increase as the oxidation degree increased. The thermal emissivity increased as the oxidation degree increased, and the thermal emissivity decreased as the measured temperature increased. It was confirmed that the thermal emissivity of oxidized IG-11 is correlated with the porosity of the sample.

Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.300-304
    • /
    • 2009
  • Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.

Research on Measurement of Infrared Thermograpphy under High Temperature Condition (고온 환경에서의 적외선 열화상 측정에 관한 연구)

  • Jun-Sik Lee;Jae-Wook Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • This study conducted a measurement method of high temeprature conditions using infrared termography. All objects emit infrared light, and this emissivity has a significant impact on the temperature measurements of infrared thermal imaging (IR) cameras. In order to measure the temperature more accurately with the IR camera, correction equations were derived by measuring the emissivity according to the temperature change of combustible metals in a high-temperature environment. Two combustible metals, Mg and Al, were used to measure emissivity with changing temperature. Each metal was heated, the emissivity was measured by comparing the temperature with IR camera and thermocouples so that the correlation between temperature and emissivity could be anslyzed. As a result of the experiment, the emissivity of the metals increases as the temperature increased. This can be interpreted as a result of increased radiation emission as the thermal movement of internal metal molecules increased.

Thermal Emissivity Changes as a Function of Degree of Flakes Alignment on the Graphite Surface (흑연표면의 열방사율 측정시 결정립 배향성의 영향)

  • Roh, Jae-Seung;Ahn, Jai-Sang;Kim, Beom-Jun;Jeon, Ho-Yeon;Seo, Seung-Kuk;Kim, Suk-Hwan;Lee, Sang-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • This study is the research on the thermal emissivity depending on the bulk graphite's alignment degree. Bulk graphites were manufactured by uni-axial pressing and subsequent heat treatment of natural graphite flakes with organic binder. The samples were prepared to be $0^{\circ}$ (relative to the 002 c-face), $45^{\circ}$, and $90^{\circ}$ (relative to the 100 a-face) for measuring alignment degree. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by infrared thermal image camera at $100^{\circ}C$ and compared with the value obtained by Infrared spectroscopy. The alignment degree and thermal emissivity of $0^{\circ}$ sample were measured to be 0 and 0.70 respectively. And those of $90^{\circ}$ sample were 0.73 and 0.80 respectively. The emissivity value was correlated with obtained by IR spectroscopy. Therefore it was considered that the thermal emissivity of the bulk graphite is correlated with the alignment degree.

Effect of $MnO_2$ Additives on the Thermal Properties of Infrared Radiator of Cordierite System Fabricated by Slurry Casting Method (주입성형법으로 제조된 Cordierite계 적외선 방사체의 열적특성에 미치는 $MnO_2$의 영향)

  • 신용덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.769-776
    • /
    • 1995
  • Infrared radiators of a cordierite system [cordierite (2MgO.2Al2O3.5SiO2)+30wt% clay+X wt% MnO2 (X=0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5)] were manufactured by a slurry casting method. Thermal and physical properties of these infrared radiators were studied by the measurement of spectra emissivity, thermal expansion coefficient and apparent density, SEM and EPMA analyses were also carried out. The thermal expansion coefficient and apparent density were decreased with increasing amouonts of MnO2 additives. On the other hand, the spectral emissivity was increased in the wavelength below 4.5${\mu}{\textrm}{m}$. Also, infrared radiators of the cordierite system, of which the spectral emisivity was 0.8, could be attainable in the wavelength above 4.5${\mu}{\textrm}{m}$. The infrared radiator of the cordierite system with 2.0wt% MnO2, of which the spectral emissivity was approximately 1.0, could be attainable in the wavelength between 4.5${\mu}{\textrm}{m}$ and 8${\mu}{\textrm}{m}$. The spectral emissivity of the specimen containing 2.0wt% MnO2 was higher than others in the wavelength between 8${\mu}{\textrm}{m}$ and 14${\mu}{\textrm}{m}$.

  • PDF

A Study of Thermal Radiation from The Alumina Particle Cloud in The Plume Using View Factor Method (형상 계수를 이용한 알루미나 입자구름의 열복사 예측 기법 연구)

  • Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2044-2049
    • /
    • 2007
  • In order to predict the thermal radiation induced from alumina particle cloud in the plume of solid propellant motor, view factor method is applied to space shuttle SRB and the result is compared with that of monte carlo method. For this purpose, radiative characteristics, such as particle cloud temperature distribution, effective emissivity or emissive power of particle cloud are studied. In the case of effective emissivity, inverse wavelength method is applied and plume reduction characteristic length is used for emissive power distribution. As a result, thermal radiation using view factor method gives more conservative results than that using monte carlo method. So it can be used for preliminary design of thermal protection system.

  • PDF