DOI QR코드

DOI QR Code

A Study on Time-Expanded Network Approach for Finding Maximal Capacity of Extra Freight on Railway Network

시간전개형 네트워크 접근법을 이용한 기존 열차시각표를 고려한 추가적 철도화물 최대수송량 결정에 관한 연구

  • Ahn, Jae-Geun (Department of Computer Engineering, Hankyong National University)
  • 안재근 (한경대학교 컴퓨터공학과)
  • Received : 2011.07.08
  • Accepted : 2011.08.11
  • Published : 2011.08.31

Abstract

This study deals with the algorithm to finding the maximum capacity and their schedule of extra freight while honoring planned timetable of trains on railway network. Time-expanded network, a kind of space-time graph, can be shown both planned train timetable and dynamic features of given problem. Pre-processing procedure is a series of infeasible arcs removal from time-expanded network honoring planned timetable. In the result, this preprocessing transforms dynamic features of given problem into static maximal flow problem which can be easily solved.

본 연구는 주어진 시간 내에 현재의 열차운행계획을 바꾸지 않고 추가적으로 수송할 수 있는 화물의 최대량과 수송 일정을 찾고자 하는 알고리즘에 관한 것이다. 이를 위해 시간전개형 네트워크로 주어진 문제를 표현한 후, 전처리 절차를 통해 불필요한 호들을 제거하는 방법으로 정적네트워크에 반복적인 최대유통문제를 적용하여 기존 열차운행계획을 고려한 화물의 최대량과 수송일정을 제시하는 절차를 예시와 함께 제시하였다.

Keywords

References

  1. Jae-hak Lee, "A Study on the Improvement Strategy of Rail Freight Transport in Korean", Korea Logistics Reivew Vol 16. No 4. pp 89 - 114, December 2006.
  2. Hag-Lae Rho, Yong-Sang Lee, Na-Na Choi, "Customer Needs Survey and Implementation Framework for Rail Freight Transport", 2000 Fall Conference of the Korean Society for Railway, 2000.
  3. Geukro Yoon, Jipyo Gim, Daeseop Moon, "A Study on the Vitalization of Rail Freight Transportation", 2004 Fall Conference of the Korean Society for Railway, 2004.
  4. Bum Hwan Park, "An Optimization Based Approach to routing and Estimation of Necessary Freight Cars", Korea National Railroad College University Theses Collection Vol. 22, pp 77-89, 2007.
  5. Cacchiani V., A. Caprara, P. Toth, "Scheduling extra freight trains on railway network", Transportation Research Part B, 44, pp. 215-231, 2010.
  6. Soondal Park, Operations Research 3rd edition, Minyongsa, 1992.
  7. Ford, L. R., and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NL. 1962.
  8. Dinic, E. A., "Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation", Soviet Mathematics Doklady, 11, pp.1277-1280, 1970.
  9. Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, Network Flows - Theory, Algorithms and Applications, Prentice-Hall. 1993.
  10. Maengkyu Kang, Networks and Algorithms, Bakyongsa, 1991.
  11. Fleischer L., E. Tardos, "Effficient continuous-time dynamic network flow algorithms", Operations Research Letters, Vol.23, pp.71-80, 1998. https://doi.org/10.1016/S0167-6377(98)00037-6
  12. Kihyon Kim, "Planning of Train Operation with Different Objectives Utilizing Mixed-Integer Nonlinear Programming Models", Master Thesis of Hanyong University, 2002.
  13. Fukasawa, R., M. V. P. de Aragao, O. Porto and E. Uchoa, "Solving the Freight Car Flow Problem to Optimality", Electronic Notes in Theoretical Computer Science Vol. 66 No. 6, pp. 42-52, 2002. https://doi.org/10.1016/S1571-0661(04)80528-0