Abstract
There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose a new prediction search algorithm for block matching using the temporal and spatial correlation of the video sequence and local statistics of neighboring motion vectors. The proposed ANBA(Adaptive Neighboring-Block Search Algorithm) determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(Sum of Absolute Difference) value by the predicted motion vectors of neighboring blocks around the same block of the previous frame and the current frame and use a previous motion vector. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved up to the 1.06dB as depend on the video sequences and improved about 0.01~0.64dB over MVFAST and PMVFAST.
동영상의 현재 블록의 움직임 벡터와 이전 블록의 움직임 벡터는 시간적 상관성을 갖고 있다. 본 논문에서는 비디오의 시공간적인 특성과 인접 블록 움직임 벡터의 통계적 특성을 이용하는 새로운 예측 탐색 알고리즘을 제안한다. 제안된 ANBA는 이전 프레임과 현재 프레임의 인접 블록의 움직임 벡터들의 평균값으로 구한 후보 벡터와 현재 블록의 이전 시점의 움직임 벡터의 2개의 후보 벡터 중에서 가장 작은 SAD 값을 갖는 점을 정확한 움직임 벡터를 찾기 위한 초기 탐색점 위치로 결정한다. 실험 결과 제안된 방식은 MVFAST와 PMVFAST에 비해 PSNR 값에 있어서 평균적으로 0.01~0.64dB 개선되고 영상에 따라 최고 1.06dB 정도 우수한 결과를 나타내었다.