DOI QR코드

DOI QR Code

Association of Polymorphisms in Fecundity Genes of GDF9, BMP15 and BMP15-1B with Litter Size in Iranian Baluchi Sheep

  • Moradband, F. (Laboratory for Molecular Genetics and Animal Biotechnology, Department of Animal Sciences, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural, Resources University) ;
  • Rahimi, G. (Laboratory for Molecular Genetics and Animal Biotechnology, Department of Animal Sciences, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural, Resources University) ;
  • Gholizadeh, M. (Laboratory for Molecular Genetics and Animal Biotechnology, Department of Animal Sciences, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural, Resources University)
  • Received : 2010.11.23
  • Accepted : 2011.04.08
  • Published : 2011.09.01

Abstract

The incidence of mutation in three loci of GDF9, BMP15 and BMP15-1B and their effects on litter sizes was evaluated in Baluchi sheep. Wild-type alleles were detected for BMP15 and BMP15-1B loci and all individuals were found to be as non-carriers for FecB and $FecX^G$ mutations but, a G to A nucleotide substitution was found in GDF9 locus. The frequency of $FecG^+$ (0.82) wild type allele was higher than the frequency of $FecG^l$ (0.18) mutant allele and the frequencies of $FecG^+/FecG^+$, $FecG^+/FecG^1$ and $FecG^1/FecG^1$ genotypes were 0.72, 0.20 and 0.08, respectively in GDF9 locus. The heterozygous ($FecG^+/FecG^1$) and homozygous ($FecG^+/FecG^+$) non-carrier ewes had 0.35 and 0.21 more lambs than the homozygous ($FecG^1/FecG^1$) carrier ewes, respectively (p<0.05). In addition to the finding of segregation of non-additive gene effect on litter size in the previous study in Baluchi sheep, these findings for the first time shows that the $FecG^1$ gene has a major effect on litter size in this breed.

Keywords

References

  1. Amiri, E., G. Rahimi and M. Vatankha. 2008. No existence of allelic polymorphism in Boorola (FecB) and Inverdel ($FecX^I$) genes in Luri-Bakhtiari sheep breed. Journal of Modern Genetics 3(4):57-63.
  2. Bodin, L., F. Lecerf, C. Pisselet, M. San Cristhal, M. Bibe and P. Mulsant. 2003. How many mutations are associated with increased ovulation rate and litter size in progeny of Lacaune meat sheep? In Proceeding "International Workshop on Major Genes and QTL in Sheep and Goats". INRA, Toulouse, France. pp. 2-11.
  3. Branet, M. 2010. A note on "amino acids". Department of Chemistry and Biochemistry, Rose-Hulman Institute of Technology. pp. 16-26.
  4. Davis, G. H. 2005. Major genes affecting ovulation rate in sheep. Genet. Sel. Evol. 37:11-23. https://doi.org/10.1186/1297-9686-37-S1-S11
  5. Davis, G. H., L. Balakrishnan, I. K. Ross, T. Wilson, S. M. Galloway, B. M. Lumsden, J. P. Hanrahan, M. Mullen, X. Z. Mao and G. L. Wang. 2006. Investigation of the Booroola (FecB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Anim. Reprod. Sci. 92:87-96. https://doi.org/10.1016/j.anireprosci.2005.06.001
  6. Davis, G. H. 2004. Fecundity genes in sheep. Anim. Reprod. Sci. 82/83:247-253. https://doi.org/10.1016/j.anireprosci.2004.04.001
  7. Davis, G. H., K. G. Dodds, J. C. McEwan and P. F. Fennessy. 1993. Liveweight, fleece weight and prolificacy of Romney ewes carrying the Inverdale prolificacy gene (FecXI) located on the X-chromosome. Livest. Prod. Sci. 34:83-91. https://doi.org/10.1016/0301-6226(93)90037-I
  8. Davis, G. H., S. M. Galloway, I. K. Ross, M. S. Gregan, J. Ward, B. V. Nimbkar, P. M. Ghalsasi, C. Nimbkar, G. D. Gray, I. Subandryo, B. Tiesnamurti, E. Martyniuk, E. Eythorsdottir, P. Mulsant, F. Lecerf, J. P. Hanrahan, G. C. Bradford and T. Wilson. 2002. DNA test in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol. Reprod. 66:1869-1874. https://doi.org/10.1095/biolreprod66.6.1869
  9. Davis, G. H., J. C. McEwan, P. F. Fennessy, K. G. Dodds and P. A. Farquhar. 1991. Evidence for the presence of a major gene influencing ovulation rate on the X chromosome of sheep. Biol. Reprod. 44:620-624. https://doi.org/10.1095/biolreprod44.4.620
  10. Galloway, S. M., K. P. McNatty, L. M. Cambridge, M. P. E. Laitinen, J. L. Juengel, S. Jokiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis and O. Ritvos. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25:279-283. https://doi.org/10.1038/77033
  11. Ghaffari, M., A. Nejati-Javaremi and G. Rahimi. 2009. Detection of polymorphism in BMPR-IB gene associated with Twining in Shal sheep using PCR-RFLP method. Int. J. Agric. Biol. 11:97-99.
  12. Guan, F., L. Shou-ren, G. Q. Shi and L. G. Yang. 2007. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Anim. Reprod. Sci. 99:44-52. https://doi.org/10.1016/j.anireprosci.2006.04.048
  13. Guan, F., S. R. Liu, G. Q. Shi, J. T. Ai, D. G. Mao and L. G. Yang. 2006. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Acta Genetica Sinica. 33:117-124. https://doi.org/10.1016/S0379-4172(06)60030-9
  14. Hanrahan, J. P., S. M. Gregan, P. Mulsant, M. Mullen, G. H. Davis, R. Powell and S. Galloway. 2004. Mutations in the genes for oocyte derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70: 900-909.
  15. Hua, G. and L. Yang. 2009. A review of research progress of FecB gene in Chinese breeds of sheep. Anim. Reprod. Sci. 116:1-9. https://doi.org/10.1016/j.anireprosci.2009.01.001
  16. Kumar, S., A. P. Kolte, A. K. Mishra, A. L. Arora and V. K. Singh. 2006. Identification of the FecB mutation in Garole×Malpura sheep and its effect on litter size. Small Rumin. Res. 64:305-310. https://doi.org/10.1016/j.smallrumres.2005.04.030
  17. Miller, S. A., D. D. Dykes and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. https://doi.org/10.1093/nar/16.3.1215
  18. Monteagudo, L. V., R. Ponz, M. T. Tejedor, A. Lavina and I. Sierra. 2009. A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 110:139-146. https://doi.org/10.1016/j.anireprosci.2008.01.005
  19. Montgomery, G. W., A. M. Crawford, J. M. Penty, K. G. Dodds, A. J. Ede H. M. Henry, C. A. Pierson, E. A. Lord, S. M. Galloway, A. E. Schmack, J. A. Sise, P .A. Swarbrick, V. Hanrahan, F. C. Buchanan and D. F. Hill. 1993. The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q. Nat. Genet. 4:410-414. https://doi.org/10.1038/ng0893-410
  20. Piper, L. R., B. M. Bindon and G. H. Davis. 1985. The single gene inheritance of the high litter size of the Booroola Merino. In: Genetics of Reproduction in Sheep (Ed. R. B. Land and D. W. Robinson). Butterworths, London, UK, pp. 115-125.
  21. Polley, S., S. De, B. Brahma, V. Mukherjee, S. Batabyal, J. S. Arora, S. Pan, A. K, Samanta, T. K. Datta and SL. Goswami. 2009. Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Trop. Anim. Health Prod. DOI: 10.1007/s11250-009-9518-1.
  22. Saneei, D. and A. Nejati-Javaremi. 2000. Litter size in Baluchi sheep is controlled by an over-dominant autosomal major gene. 14th International Congress on Animal Reproduction, Sweden. p. 1154.
  23. Statistical Analysis Systems Institute. 2002. SAS user's guide, version 9.00. SAS Institute Inc., Cary, NC, USA.
  24. Souza, C. J. C. MacDougall, B. K. Campbell, A. S. McNeilly and D. T. Baird. 2001. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 169:1-6. https://doi.org/10.1677/joe.0.1690001
  25. Wilson, T., X. Y. Wu, J. L. Juengel, I. K. Ross, J. M. Lumsden, E. A. Lord, K. G. Dodds, G. A. Walling, J. C. McEwan, A. R. O'Connell, K. P. McNatty and G. W. Montgomery. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64:1225-1235. https://doi.org/10.1095/biolreprod64.4.1225
  26. Yan, Y. D., M. X. Chu, Y. Q. Zeng, L. Fang, S. C. Ye, L. M. Wang, Q. K. Guo, D. Q. Han, Z. X. Zhang, X. J. Wang and X. Z. Zhang. 2005. Study on bone morphogenetic protein receptor IB as a candidate gene for prolificacy in Small Tailed Han sheep and Hu sheep. J. Agric. Biotechnol. 13:66-71.

Cited by

  1. A new mutation in exon 2 of the bone morphogenetic protein 15 gene is associated with increase in prolificacy of Mehraban and Lori sheep vol.47, pp.5, 2015, https://doi.org/10.1007/s11250-015-0799-2
  2. Computational Molecular Analysis of the Sequences of BMP15 Gene of Ruminants and Non-Ruminants vol.06, pp.02, 2016, https://doi.org/10.4236/ojgen.2016.62005
  3. A review on prolificacy genes in sheep vol.51, pp.5, 2016, https://doi.org/10.1111/rda.12733
  4. mutations and their linkage with litter size in Barki and Rahmani sheep breeds vol.52, pp.6, 2017, https://doi.org/10.1111/rda.13002
  5. qPCR and HRM-based diagnosis of SNPs on growth differentiation factor 9 (GDF9), a gene associated with sheep (Ovis aries) prolificacy vol.7, pp.3, 2017, https://doi.org/10.1007/s13205-017-0837-z
  6. GDF9 gene polymorphism and its association with litter size in two Russian sheep breeds vol.29, pp.1, 2018, https://doi.org/10.1007/s12210-017-0659-2
  7. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00118
  8. Novel Mutation in Exon 1 of the BMP15 Gene and its Association with Reproduction Traits in Sheep vol.27, pp.4, 2011, https://doi.org/10.1080/10495398.2016.1182539
  9. Variant GDF9 mRNA is likely not the main cause of larger litter size in Iranian Lori-Bakhtyari, Shal, Ghezel, and Afshari sheep breeds vol.60, pp.2, 2011, https://doi.org/10.5194/aab-60-119-2017
  10. Association of the polymorphisms FecXR, FecGH, and FecGI and non-genetic factors that affect the prolificacy of Colombian creole sheep vol.11, pp.17, 2018, https://doi.org/10.17485/ijst/2018/v11i17/122374
  11. Detection of single nucleotide polymorphisms at major prolificacy genes in the Mehraban sheep and association with litter size vol.18, pp.3, 2011, https://doi.org/10.2478/aoas-2018-0014
  12. Chromosomal aberrations and mutational analysis of BMP-15 gene in amenorrhea vol.9, pp.4, 2011, https://doi.org/10.22376/ijpbs.2018.9.4.b1-10
  13. Association of polymorphisms in bone morphogenetic protein receptor-1B gene exon-9 with litter size in Dorset, Mongolian, and Small Tail Han ewes vol.32, pp.7, 2019, https://doi.org/10.5713/ajas.18.0541
  14. Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep vol.11, pp.4, 2011, https://doi.org/10.3390/genes11040375
  15. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep vol.16, pp.1, 2011, https://doi.org/10.1371/journal.pone.0244408