DOI QR코드

DOI QR Code

Robust Nonlinear Control of AC Brushless Motor for Electric Vehicles Application

  • Langarica-Cordoba, Diego (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico) ;
  • Guerrero-Ramirez, Gerardo V. (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico) ;
  • Claudio-Sanchez, Abraham (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico) ;
  • Duran-Fonseca, Miguel A. (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico) ;
  • Adam-Medina, Manuel (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico) ;
  • Astorga-Zaragoza, Carlos-Manuel (Department of Electronic Engineering, Centro Nacional de Investigacion y Desarrollo Tecnologico)
  • Received : 2010.12.30
  • Published : 2011.07.20

Abstract

This article proposes a robust nonlinear control based on Lyapunov's redesign, whose purpose is to deal with parametric uncertainty in the resistance of the motor windings. The robust controller design is based on the passivity properties of the motor, as well as energy shaping and damping injection. The application of this control technique is focused on electric vehicles mainly formed by a battery bank, a power inverter, an AC brushless motor and the mechanical transmission. The sine PWM technique is used to trigger the switching devices of inverter. The results were obtained from simulation, where is shown that robust control makes a proper tracking of electromagnetic torque.

Keywords

Acknowledgement

Supported by : CONACYT

References

  1. K.-Y. Cho, "Sensorless control for a PM synchronous motor in a single piston rotary compressor," Journal of Power Electronics, Vol. 6, No. 1, pp. 11-19, Jan. 2006.
  2. J. M. A. Scherpen, D. Jeltsema, and R. Ortega, "An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems," Automatica, Vol. 40, pp. 1643-1646, Sep. 2004. https://doi.org/10.1016/j.automatica.2004.04.007
  3. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, Electric Machinery, McGraw Hill, 2003.
  4. G. V. Guerrero-Ramirez, "Control de Manipuladores de Robots Accionados por Motores de Induccion," Ph.D. Thesis, Universidad Nacional Autonoma de Mexico, Feb. 2001.
  5. L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems, Springer, 2007.
  6. A. Haddoun, M. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouli, and K. Srairi, " A loss minimization DTC scheme for EV induction motors," IEEE Trans. Veh. Technol, Vol. 56, No. 1, Jan. 2007.
  7. Y. Hori, "Future vehicle driven by electricity and control research on four-wheel-motored UOT electric March II," IEEE Trans. Ind. Electron., pp. 954-962, Oct. 2004.
  8. K.-H. Hyun, "Design of a speed controller for permanent magnet synchronous motor in pure electric vehicle applications," International Conference on Control, Automation and Systems, Oct. 2007.
  9. H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.
  10. H. Komurcugil, "Steady-state analysis and passivity-based control of single-phase PWM current-source inverters," IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 1026-1030, Mar. 2010. https://doi.org/10.1109/TIE.2009.2025297
  11. P. Kundur, Power System Stability and Control, McGraw- Hill,Inc, 1994.
  12. S. E. Lyshevski, Electromechanical Systems, Electric Machines And Applied Mechatronics, CRC press, 1999.
  13. R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity Based Control of Euler-Lagrange Systems, Springer, 1998.
  14. V. Petrovic, R. Ortega, and A. M. Stankovic, "Interconnection and damping assignment approach to control of PM synchronous motors," IEEE Trans. Contr. Syst. Technol., Vol. 19, No. 6, pp 811-820, Nov. 2001.
  15. A. D. Rajapakse, A. M. Gole, and P. L. Wilson, "Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems," IEEE Trans. Power Del., Vol. 20, No. 1, pp 319-327, Jan. 2005. https://doi.org/10.1109/TPWRD.2004.839726
  16. M. H. Rashid, Power Electronics Handbook, Academic Press, 2001.
  17. A. Astolfi, J. Lee, R. Ortega, L. Praly and K. Nam, "Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability," IEEE Trans. Contr. Syst. Technol., pp 1-14, Apr. 2010.
  18. J. L. Tichenor, S. D. Sudhoff, and J. L. Drewniak, "Behavioral IGBT modeling for predicting high frequency effects in motor drives," IEEE Trans. Power Electron., Vol. 15, No. 2, pp 354-360, Mar. 2000. https://doi.org/10.1109/63.838108
  19. A. M. Trzynadlowski, Control of Induction Motors, Academic Press, 2001.
  20. S.-C. Yoon and J.-M. Kim, "Sensorless control of a PMSM at low speeds using high frequency voltage injection," Journal of Power Electronics, Vol. 5, No. 1, pp. 11-19, Jan. 2005.