Enhanced Antioxident Effect by over Expression of Tomato β-carotene Hydroxylase Gene (ChyB) Using Agrobacterium-infiltration in Tobacco Plant

Agro-infiltration을 이용한 토마토 β-carotene hydroxylase 유전자(ChyB) 과발현 및 담배식물체의 항산화 효과 증진

  • Choi, Yoon-Jeong (Department of Horticulture and Life Science, Yeungnam University) ;
  • Yoon, Kyung-Young (Department of Food and Nutrition, Yeungnam University) ;
  • Yun, Hae-Keun (Department of Horticulture and Life Science, Yeungnam University) ;
  • Suh, Sang-Gon (Department of Horticulture and Life Science, Yeungnam University) ;
  • Moon, Yong-Sun (Department of Horticulture and Life Science, Yeungnam University)
  • 최윤정 (영남대학교 원예생명과학과) ;
  • 윤경영 (영남대학교 식품영양학과) ;
  • 윤해근 (영남대학교 원예생명과학과) ;
  • 서상곤 (영남대학교 원예생명과학과) ;
  • 문용선 (영남대학교 원예생명과학과)
  • Received : 2011.03.15
  • Accepted : 2011.04.22
  • Published : 2011.06.30

Abstract

Several reports indicated that astaxanthin and zeaxanthin have more active anticancer activity than pro-vitamin A carotenes. ${\beta}$-carotene hydroxylase is a key enzyme to synthesize zeaxanthin and astaxanthin in carotenoids biosynthesis pathway. We isolated the ChyB gene encoding ${\beta}$-carotene hydroxylase from tomato leaves. The ChyB gene (1.5Kbp) fragment was cloned into the binary vector and designated to pIG121-ChyB-tom. Agrobacterium-mediated infiltration was used for transient assay in Nicotiana benthamiana. Leaf samples were collected 0, 1, 2, 3 days after infiltration (DAI). RT-PCR result showed that the expression of ${\beta}$-carotene hydroxylase transcripts was not detected in control (0DAI), but its expression was detected after 1 DPI and increased later on. When the activity of ${\beta}$-carotene hydroxylase was measured, the 1,1-diphenyl-pricryl hydrazyl (DPPH) radical scavenging activity (27%) at 2 DAI was significantly higher than that (21%) at 0 DAI. These results indicated that anti-oxidant activity dramatically increased at 2 DAI in tobacco leaves was due to over expression of tomato ${\beta}$-carotene hydroxylase. These results can be the foundation to develop tomato cultivars with high oxy-carotenoids content using the ChyB gene transformation.

${\beta}$-carotene hydroxylase는 carotenoids의 생합성 경로에서 astaxanthin 및 zeaxanthin 합성에 관여하는 주요 효소이다. Astaxanthin과 zeaxanthin은 비타민 A 전구체보다 항암효과가 더 높다고 보고되고 있다. 따라서 ${\beta}$-carotene hydroxylase 유전자(ChyB)를 토마토 잎에서 분리하고 binary 벡터에 클로닝 한 후 pIG121-ChyB-tom으로 명명하였다. 토마토 ChyB 유전자를 Agrobacterium-mediated infiltration 방법을 이용하여 생육 8주 된 담배 잎에 일시적 형질전환을 하였다. 감염 0, 1, 2, 3일 후 RT-PCR 한 결과 담배에서는 거의 발현되지 않았던 ${\beta}$-carotene hydroxylase 전사체가 감염 1일 후부터 증가하여 2일 후 최대 전사량을 보이고 3일 후부터 감소하는 경향을 나타내었다. 이 결과를 바탕으로 감염 후 0, 2, 3일째 담배 잎을 채취하여 항산화 효능을 측정한 결과, 감염 2일 후 1,1-diphenyl-pricryl hydrazyl(DPPH) radical 소거 활성이 대조구에 비해 약 30% 증가하는 것을 확인하였다. 이 연구결과를 통해 외래 유용 유전자를 원예작물에 형질전환하여 항산화 및 항암효과가 우수한 zeaxanthin 및 astaxanthin 등 oxy-carotenoids의 함유량을 증진시킨 새로운 기능성 토마토 및 다양한 원예작물의 신품종 개발에 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Aluru, M., Y. Xu, R. Guo, Z. Wang, S. Li, W. White, K. Wang, and S. Rodermel. 2008. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 59:3551-3562 https://doi.org/10.1093/jxb/ern212
  2. Armstron, G.A. 1994. Ecubacteria show their true colors: Genetic of carotenoids pigmen biosynthesis from microbe to plants. J. Bacteriol. 176:4795-4802.
  3. Armstron, G.A. and J.E. Hearst. 1996. Genetics and molecular biology of carotenoids pigment biosynthesis. FASEB J. 10: 228-237.
  4. Bramley, P.M. 2002. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 53:2107-2113. https://doi.org/10.1093/jxb/erf059
  5. Canfield, L.M., J.W. Forage, and J.G. Valenzuela. 1992. Carotenoids as cellular antioxidants. Proc. Soc. Exp. Biol. Med. 200:260-265.
  6. Cerutti, P.A. 1985. Prooxidant states and tumor promotion. Science 227:375-381. https://doi.org/10.1126/science.2981433
  7. Chen, Y.C., Y. Sugiyama, N. Abe, R. Kuruto-Niwa, R. Nozawa, and A. Hirota. 2005. DPPH radical-scavenging compounds from Dou-Chi, a soybean fermented food. Biosci. Biotechnol. Biochem. 69:999-1006. https://doi.org/10.1271/bbb.69.999
  8. Chew, B.P., M.W. Wong, and T.S. Wong. 1996. Effects of lutein from marigold extract on immunity and growth of mammary tumors in mice. Anticancer Res. 16:3689-3694.
  9. Cunningham, F.X. Jr. and H.E. Gan. 1998. Genes and enzymes of carotenoids biosynthesis in plants. Annu. Rev. Plant Physiol. 49:557-583. https://doi.org/10.1146/annurev.arplant.49.1.557
  10. Eskelin, K., T. Suntio, S. Hyvärinen, A. Harfren, and K. Mäkinen. 2010. Renilla luciferase-based quantitation of potato virus A infection initiated with Agrobacterium infiltration of N. benthamiana leaves. J. Vir. Meth. 164:101-110. https://doi.org/10.1016/j.jviromet.2009.12.006
  11. Fraser, P.D. and P.M. Bramley. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 19:1053-1068.
  12. Fu, H., B. Xie, S. Ma, X. Zhu, G. Fan, and S. Pan. 2011. Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatic). J. Food Comp. Anal. 24: 288-297. https://doi.org/10.1016/j.jfca.2010.08.007
  13. Gerster, H. 1992. Anticarcinogenic effect of common carotenoids. Int. J. Vitam. Nutr. Res. 63:93-121.
  14. Guiliano, G., G.E. Bartley, and P.A. Scolnik. 1993. Regulation of carotenoids biosynthesis during tomato development. Plant Cell 5:379-387.
  15. Guo, X., L. Yang, H. Hu, and L. Yang. 2009. Cloning and expression analysis of carotenogenic genes during ripening of autumn olive fruit (Elaeagnus umbellate). J. Agri. Food Chem. 57:5334-5339. https://doi.org/10.1021/jf900547e
  16. Harjes, C.E., T.R. Rocheford, L. Bai, T.P. Brutnell, C.B. Kandianis, S.G. Sowinski, A.E. Stapleton, R. Vallabhaneni, M. Williams, E.T. Wurtzel, J. Yan, and E.S. Buckler. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330-333. https://doi.org/10.1126/science.1150255
  17. Kim, C.J. and H.J. Suh. 2005. Antioxidant activities of Rhubarb extracts contiaining phenolic compounds. Korean J. Food Culture 22:77-85.
  18. Li, Q. G. Farre, S. Naqvi, J. Breitenbach, G. Sanahuja, C. Bai, G. Sandmann, T. Capell, P. Christou, and C. Zhu. 2010. Cloning and functional characterization of the maize carotenoid isomerase and ${\beta}$-carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic Res. 19:1053-1068. https://doi.org/10.1007/s11248-010-9381-x
  19. Liu, D., J. Shi, A.C. Ibarra, Y. Kakuda, and S.J. Xue. 2008. The scavenging capacity and synersistic effects lycopene, vitamin E, vitamin C, and ${\beta}$-carotene mixtures on the DPPH free radical. LWT-Food Sci. Technol. 41:1344-1349. https://doi.org/10.1016/j.lwt.2007.08.001
  20. Misawa, N., M. Nakagawa, K. Kobayashi, S. Yamano, Y. Izawa, K. Nakamura, and K. Harashima. 1990. Elucidation of the Erwiniauredovora carotenoids biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. 172:6704-6712.
  21. Moon, Y.S. and K.L. Hefferon. 2007. Amplification of genomeintegrated BeYDV replicon by transient expression. Elec. J. Biotech. 10:1-11.
  22. Nishino, H., M. Murakoshi, H. Tokuda, and Y. Satomi. 2009. Cancer prevention by carotenoids. Arch. Biochem. Biophys. 483:165-168. https://doi.org/10.1016/j.abb.2008.09.011
  23. Pecker, I., R. Gabbay, F.X. Jr. Cunningham, and J. Hirschberg. 1996. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol. Biol. 30:807-819. https://doi.org/10.1007/BF00019013
  24. Prasad, K.N., L.Y. Chew, H.E. Khoo, B. Yang, A. Azlan, and A. Ismail. 2011. Carotenoids and antioxidant capacities from Canarium odontophyllum Miq. Fruit Food Chem. 124:1549-1555. https://doi.org/10.1016/j.foodchem.2010.08.010
  25. Quilliot, D., A. Forbes, F. Dubois, J.L. Gueant, and O. Ziegler. 2011. Carotenoid deficiency in chronic pancreatitis effect of an increase in tomato consumption. Eur. J. Clin. Nutr. 65: 262-268. https://doi.org/10.1038/ejcn.2010.232
  26. Rao, A.V. and S. Agarwal. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic disease: A review. Nutr. Res. 19:305-323. https://doi.org/10.1016/S0271-5317(98)00193-6
  27. Straub, O. 1987. List of carotenoids. Birkihaser Verlag, Basel, Switzerland.
  28. Zanfini, A., G. Corbini, C.L. Rosa, and E. Dreassi. 2010. Antioxidant activity of tomato lipophillic extracts and interactions between carotenoids and ${\alpha}$-tocopherol in synthetic mixtures. LWT-Food Sci. Technol. 43:67-72. https://doi.org/10.1016/j.lwt.2009.06.011
  29. Zhu, C., S. Naqvi, S. Gomez-Galera, A.M. Pelacho, T. Capell, and P. Christou. 2007. Transgenic strategies for the nutritional enhancement of plants. Trends. Plant Sci. 12:548-556. https://doi.org/10.1016/j.tplants.2007.09.007
  30. Zhu, C., S. Naqvi, T. Capell, and P. Christou. 2009. Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch. Biochem. Biophys. 483:182-190. https://doi.org/10.1016/j.abb.2008.10.029