Effects of Foliar-sprayed Diniconazole on Contents of Endogenous Gibberellic Acids and Abscisic Acid in Lilium davuricum

Diniconazole 엽면살포가 날개하늘나리의 내생 GA 및 ABA 함량에 미치는 영향

  • Eum, Sun-Jung (Department of Horticultural Science, Yeungnam University) ;
  • Park, Kyeung-Il (Department of Horticultural Science, Yeungnam University) ;
  • Lee, In-Jung (School of Applied Bioscience, Kyungpook National University) ;
  • Choi, Young-Jun (Gangjin Agricultural Technology and Extension Center) ;
  • Oh, Wook (Department of Horticultural Science, Yeungnam University) ;
  • Kim, Kiu-Weon (Department of Horticultural Science, Yeungnam University)
  • 엄선정 (영남대학교 원예생명과학과) ;
  • 박경일 (영남대학교 원예생명과학과) ;
  • 이인중 (경북대학교 응용생명과학부) ;
  • 최영준 (강진군농업기술센터) ;
  • 오욱 (영남대학교 원예생명과학과) ;
  • 김규원 (영남대학교 원예생명과학과)
  • Received : 2010.11.08
  • Accepted : 2011.03.15
  • Published : 2011.06.30

Abstract

Plant growth retardants reduce the plant height by inhibiting stem elongation in Lilium davuricum. To investigate the plant hormones related to stem elongation, we sprayed 50 $mg{\cdot}L^{-1}$ diniconazole to young plants of L. davuricum and quantified the contents of endogenous gibberellic acids (GA) and abscisic acid (ABA). In GA biosynthesis, L. davuricum had not only the early C-13 hydroxylation ($GA_{19}{\rightarrow}GA_{20}{\rightarrow}GA_1$) pathway resulting in $GA_1$ as the active form but also the non C-13 hydroxylation (NCH, $GA_{12}{\rightarrow}GA_{24}{\rightarrow}GA_9{\rightarrow}GA_4$) with $GA_4$ as the active form. However, the main pathway was NCH because $GA_4$ concentration of 55 $ng{\cdot}g^{-1}$ dry wt was much higher than $GA_1$ content of 0.23 $ng{\cdot}g^{-1}$ dry wt in control plant. Diniconazole inhibited GA biosynthesis through NCH pathway from its early stage. $GA_{12}$ content decreased by diniconazole up to 6% level of that of control and this effect continued to $GA_4$. Diniconazole reduced $GA_{12}$ content by 12.7 $ng{\cdot}g^{-1}$ dry wt, whereas that of control plant was 213.8 $ng{\cdot}g^{-1}$ dry wt. ABA content decreased up to one third of control by diniconazole application. From the contents of endogenous $GA_4$, $GA_1$, and ABA in this study, we could conclude that diniconazole reduces the plant height by inhibiting $GA_4$ biosynthesis in L. davuricum.

식물생장억제물질의 처리는 날개하늘나리의 줄기 신장을 억제시키는데, 여기에 관여하는 식물호르몬을 찾기 위해 diniconazole의 엽면살포 후 내생 GA 및 ABA의 함량 변화를 조사하였다. 그 결과, 날개하늘나리(L. dauricum)는 $GA_1$을 활성형으로 하는 early C-13 hydroxylation($GA_{19}{\rightarrow}GA_{20}{\rightarrow}GA_1$) 경로와 $GA_4$를 활성형으로 하는 non C-13 hydroxylation(NCH, $GA_{12}{\rightarrow}GA_{24}{\rightarrow}GA_9{\rightarrow}GA_4$) 경로 모두를 가지고 있었으나, 주된 경로는 NCH 경로였다. NCH 경로의 GA 생합성은 diniconazole $50mg{\cdot}L^{-1}$ 살포에 의해 초기 단계에서부터 억제되었다. 즉 diniconazole 처리구의 $GA_{12}$ 함량은 대조구에 비해 1/17로 현저히 감소되었으며, 이러한 경향은 $GA_4$까지 계속되었다. 즉 건물 1g당 $GA_{12}$ 함량은 대조구가 213.8ng인 것에 비해, diniconazole 처리구는 12.7ng이었다. ABA의 함량도 GA에서와 같이 diniconazole 살포에 의해 1/3 수준으로 크게 감소되었다. 즉 건물 1g당 ABA 함량은 대조구 37.2ng인 것에 비해, diniconazole 처리구는 14.8ng이었다. 본 연구의 결과, 내생 $GA_4$, $GA_1$, 그리고 ABA의 함량을 고려할 때 diniconazole에 의한 날개하늘나리의 초장감소는 $GA_4$의 생합성 억제에 기인한 것으로 생각된다.

Keywords

References

  1. Arigoni, D., S. Sagner, C. Latzel, W. Eisenreich, A. Bacher, and M. Zenk. 1997. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci., USA. 94:10600-10605. https://doi.org/10.1073/pnas.94.20.10600
  2. Asare-Boamah, N.K., G. Hofstra, R.A. Fletcher, and E.B. Dumbroff. 1986. Triadimefon protects bean plants from water stress through its effects on abscisic acid. Plant Cell Physiol. 27:383-390.
  3. Browning, G. and T.A. Wignall. 1987. Identification and quantification of indole-3-acetic and abscisic acids in the cambial region of Quercus robur by combined gas chromatographymass spectrometry. Tree Physiol. 3:235-246. https://doi.org/10.1093/treephys/3.3.235
  4. Culter, A. and J. Krochko. 1999. Formation and breakdown of ABA. Trends Plant Sci. 4:472-478. https://doi.org/10.1016/S1360-1385(99)01497-1
  5. Eum, S.J., K.I. Park, W. Oh, and K.W. Kim. 2010. Plant growth retardants can inhibit stem elongation and improve flowering rate in Lilium concolor var. parthneion and L. dauricum. Flower Res. J. 18:38-43.
  6. Foster, K.R. and P.W. Morgan. 1995. Genetic regulation of development in Sorghum bicolor. IX. The ${ma_3}^R$ allele disrupts diurnal control of gibberellin biosynthesis. Plant Physiol. 108:337-343.
  7. Gaskin, P. and J. MacMillan. 1991. GC-MS of gibberellins and related compounds: methodology and a library of reference spectra. Cantocks Enterprises, Bristol, UK.
  8. Huh, E.J., S.K. Lee, B.N. Chung, I.J. Lee, and S.Y. Choi. 2006. Changes of growth and gibberellin contents in chrysanthemum by infection of chrysanthemum stunt viroid. Hort. Environ. Biotechnol. 47:366-370.
  9. Kawboj, J.S., G. Browning, P.S. Blake, J.D. Quinlan, and D.A. Baker. 1999. GC-MS-SIM analysis of abscisic acid and indole- 3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul. 28:21-27. https://doi.org/10.1023/A:1006299414481
  10. Lee, I.J., D.H. Shin, Y.H. Yoon, and H.Y. Kim. 2001. Isoprenoid metabolism and adaptability of crops. Pro. Symp. on Biofunction Control Environmental Restoration. p. 25-54.
  11. Lee, I.J., K.R. Foster, and P.W. Morgan. 1998a. Effect of gibberellin biosynthesis inhibitors on native gibberellin content, growth and floral initiation in Sorghum bicolor. J. Plant Growth Regul. 17:185-195. https://doi.org/10.1007/PL00007034
  12. Lee, I.J., K.U. Kim, S.C. Lee, and D.H. Shin. 1997. Effect of gibberellin biosynthesis inhibitor ancymidol on growth, floral initiation and endogenous GA levels in Sorghum bicolor. Kor. J. Weed Sci. 17:207-213.
  13. Lee, J.M., Y.D. Park, C.H. So, and C.K. Kang. 1998b. Plant biochemical regulators. Donghwa Technology, Seoul, Korea.
  14. Lichtenthaler, H., J. Schwender, A. Disch, and M. Rohmer. 1997. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400:271-274. https://doi.org/10.1016/S0014-5793(96)01404-4
  15. Norman, S.M., R.D. Bennett, S.M. Poling, V.P. Maier, and M.D. Nelson. 1986. Paclobutrazol inhibits abscisic acid biosynthesis in Cercospora rosicola. Plant Physiol. 80:122-125. https://doi.org/10.1104/pp.80.1.122
  16. Oh, W. 2007. Growth mechanism and its manipulation by temperature, light intensity, and plant growth regulators in Cyclamen persicum. PhD Diss., Seoul Natl. Univ., Seoul, Korea.
  17. Qi, Q.G., P.A. Rose, G.D. Abrams, D.C. Taylor, S.R. Abrams, and A.J. Cutler. 1998. (+)-Abscisic acid metabolism, 3-ketoacylcoenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117:979-987. https://doi.org/10.1104/pp.117.3.979
  18. Sponsel, V.M. 1995. The biosynthesis and metabolism of gibberellins in higher plants, p. 66-97. In: J.H. Davies (ed.). Plant hormones. Kluwer Academic Publ., Dordretch, The Netherlands.
  19. Takayama, T., T. Toyomasu, H. Yamane, N. Murofushi, and H. Yajima. 1993. Identification of gibberellins and abscisic acid in bulbs of Lilium elegans Thunb. and their quantitative changes during cold treatment and the subsequent cultivation. J. Jpn. Soc. Hort. Sci. 62:189-196. https://doi.org/10.2503/jjshs.62.189
  20. Talon, M., M. Koornneef, and J.A.D. Zeevaart. 1990. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc. Natl. Acad. Sci. USA. 87:7983-7987. https://doi.org/10.1073/pnas.87.20.7983
  21. Wang, S.Y., T. Sun, Z.L. Ji, and M. Faust. 1987. Effect of paclobutrazol on water stress-induced abscisic acid in apple seedling leaves. Plant Physiol. 84:1051-1054. https://doi.org/10.1104/pp.84.4.1051
  22. Zeevaart, J.A.D., D.A. Gage, and R.A. Creelman. 1990. Recent studies of the metabolism of abscisic acid, p. 233-240. In: R.P. Pharis and S.B. Rood (eds.). Plant growth substance. Springer-verlag, Berlin, Germany.