DOI QR코드

DOI QR Code

식물환경복원을 위한 저서미세조류의 성장에 미치는 수온과 염분의 영향

Effects of Temperature and Salinity on the Growth of Marine Benthic Microalgae for Phytoremediation

  • 투고 : 2011.04.07
  • 심사 : 2011.05.17
  • 발행 : 2011.05.25

초록

부영양화가 진행된 연안역의 퇴적환경개선을 목적으로, 수정만으로 부터 분리한 저서미세조류 Achnanthes sp., Amphora sp., Navicula sp.와 Nitzschia sp.의 성장에 미치는 수온과 염분의 영향을 정치배양으로 살펴보았다. 최대 성장속도는 Achnanthes sp.의 경우 $25^{\circ}C$와 25 psu(0.60 /day), Amphora sp.에서 $15^{\circ}C$와 25 psu(0.56 /day), Navicula sp.에서 $20^{\circ}C$와 30 psu(0.53 /day) 그리고 Nitzschia sp.에서 $20^{\circ}C$와 25 psu(0.48 /day)로 나타났다. 그리고 4종의 최적성장(최대성장 속도의 70% 이내)로부터, Amphora sp., Navicula sp.와 Nitzschia sp.는 광온성 및 광염성종으로 나타났으며, Achnanthes sp.는 낮은 수온영역에서 성장하기 어려운 협온성 종으로 특징지을 수 있었다. 따라서 Amphora sp., Navicula sp.와 Nitzschia sp.는 부영양화나 빈산소수괴 문제와 같이 오염된 연안역의 개선을 위한 식물환경복원용으로 유용한 미세조류일 것으로 판단된다.

To improve sediment quality in eutrophic coastal areas using benthic microalgae, we examined the effects of temperature and salinity on the growth of benthic microalgae Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. isolated from Sujeong Bay, Korea, using batch cultures. The maximum growth rates were obtained under the combined temperature and salinity conditions of $25^{\circ}C$ and 25 psu for Achnanthes sp. (0.60 /day), $15^{\circ}C$ and 25 psu for Amphora sp. (0.56 /day), $20^{\circ}C$ and 30 psu for Navicula sp. (0.53 /day), $20^{\circ}C$ and 25 psu for Nitzschia sp. (0.48 /day). Considering these results of temperature and salinity conditions required for optimum growth (${\geq}$ 70% of maximum specific growth rate), Amphora sp. Navicula sp. and Nitzschia sp. were characterized as eurythermal and euryhaline species, while Achnanthes sp., which exhibited extremely low survival at low temperature. In conclusion, Amphora sp., Navicula sp. and Nitzschia sp. may be useful species for phytoremediation, to control eutrophication and hypoxic water and thus improve environmental conditions of polluted coastal areas.

키워드

참고문헌

  1. 오석진, 박달수, 양한섭, 윤양호, Honjo, T., 2007, "발광다이 오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선", 한국해양환경공학회지, 10, 93-101.
  2. 유만호, 최중기, 2005, "강화도 장화리 갯벌에서 저서미세조류의 계절적 분포 및 일차 생산력", 한국해양학회지, 10, 8-18.
  3. 이원호, 심재형, 1995, "한국연안 산 규조 Skeletonema costatum 의 조도에 대한 생태적 지위 성분의 종내 변위", 한국해양학회지, 35, 534-541.
  4. 고철환, 1991, "한국 서해 펄 조간대에서의 미세조류에 의한 제 1차 생산 및 생물량", 한국과학재단, 81 pp.
  5. Admiraal, W., 1977, "Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture", Mar. Biol., Vol.36, 1-9.
  6. Admiraal, W., 1984, "The ecology of estuarine sediment-inhabiting diatoms", Prog. Phycol. Res., Vol.5, 269-322.
  7. Brand, L.E., Guillard, R.R.L. and Murphy, L.S., 1981, "A method for the rapid and precise determination of acclimated phytoplankton reproduction rates", J. Plankton Res., Vol.3, 193- 201. https://doi.org/10.1093/plankt/3.2.193
  8. Buffan-Dubau, E. and Carman, K.R., 2000, "Diel feeding behavior of meiofauna and their relationships with microalgal resources", Limnol. Oceanogr., Vol.45, 381-395. https://doi.org/10.4319/lo.2000.45.2.0381
  9. Cahoon, L.B., 1999, "The role of benthic microalgae in neritic ecosystem", Oceanogr. Mar. Biol., Vol.37, 47-86.
  10. Doblin, M.A., Blackburn, S.I. and Hallegraerff, G.M., 1999, "Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by organic substances", J. Exp. Mar. Biol. Ecol., Vol.236, 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  11. Eppley, R.W., 1977, "The growth and culture of diatoms", In: Werner, D. (ed), The biology of diatoms. University of California Press, Berkeley, 24-64.
  12. Gallagher, J.C., 1982, "Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae)", J. Phycol., Vol.18, 148-162. https://doi.org/10.1111/j.1529-8817.1982.tb03169.x
  13. Guillard, R.R.L. and Ryther, D., 1962, "Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran", Can. J. Microbiol., Vol.8, 229-239. https://doi.org/10.1139/m62-029
  14. Hillebrand, H., Drselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999, "Biovolume calculation for pelagic and benthic microalgae", J. Phycol., Vol.35, 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  15. Klein, B., 1988, "Variations of pigment content in two benthic diatoms during growth in batch cultures", J. Exp. Mar. Biol. Ecol., Vol.115, 237-248. https://doi.org/10.1016/0022-0981(88)90157-8
  16. MacIntyre, H.L., Geider, R.J. and Miller, D.C., 1996, "Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distibution, abundance and primary production", Estuaries, Vol.19, 186-201. https://doi.org/10.2307/1352224
  17. Malone, T.C., 1980, "Algal size", In: Morris, I.(ed), The physiological ecology of phytoplankton, University of California Press, California, 433-463.
  18. Montagna, P.A., Blanchard, G.F. and Dinet, A., 1995, "Effect of production and biomass of intertidal microphytobenths on meiofaunal grazing rates", J. Exp. Mar. Biol. Ecol., Vol.185, 149-165. https://doi.org/10.1016/0022-0981(94)00138-4
  19. Provasoil, L., Shiraishi, K. and Lance, J.R., 1959, "Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture", Ann. N.Y. Sci., Vol.77, 250-261.
  20. Rees, T.A.V., 2007, "Metabolic and ecological constraints imposed by similar rates of ammonium and nirate uptake per unit surface area at low substrate concentrations in marine phytoplankton and macroalgae", J. Phycol., Vol.43, 197-207. https://doi.org/10.1111/j.1529-8817.2007.00321.x
  21. Rizzo, W.M., 1990, "Nutrient exchanges between the water column and a subtidal benthic microalgal community", Estuaries, Vol.13, 219-226.
  22. Ruangdej, U. and Fukami, K., 2004, "Stimulation of photosynthesis and consequent oxygen production in anoxic bottom water by supply of low-intensity light through an optical fiber", Fish. Sci., Vol.70, 421-429. https://doi.org/10.1111/j.1444-2906.2004.00821.x
  23. Sandau, E., Sandau, P. and Pulz, O., 1996, "Heavy metal sorption by microalgae", Acta. Biotechnol., Vol.16, 227-235. https://doi.org/10.1002/abio.370160402
  24. Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Dominguez, A.R., Dupeyron, R. and Valiente, V., 1999, "Heavy metal removal by microalgae", Bull. Environ. Contam. Toxicol., 62, Vol.144-151. https://doi.org/10.1007/s001289900853
  25. Underwood, G.J.C. and Kromkamp, J., 1999, "Primary production by phytoplankton and microphytobenthos in estuaries", Adv. Ecol. Res., Vol.29, 93-153. https://doi.org/10.1016/S0065-2504(08)60192-0
  26. Williams, R.B., 1964, "Division rates of salt marsh diatoms in relation to salinity and cell size", Ecology, Vol.45, 877-880. https://doi.org/10.2307/1934940
  27. Yamamoto, T., Goto, I., Kawaguchi, O., Minagawa, K., Ariyoshi, E. and Matsuda, O., 2008, "Phytoremediation of shallow organically enriched marine sediments using benthic microalgae", Mar. Poll. Bull., Vol.57, 108-115. https://doi.org/10.1016/j.marpolbul.2007.10.006

피인용 문헌

  1. Effect of light quality on the growth and proximal composition of Amphora sp. vol.29, pp.3, 2017, https://doi.org/10.1007/s10811-016-1029-7