• Title/Summary/Keyword: 저서미세조류

Search Result 30, Processing Time 0.028 seconds

Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea (강화도 장화리 갯벌에서 저서미세조류의 계절적 분포 및 일차 생산력)

  • Yoo, Man-Ho;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • We studied seasonal distribution of the microphytobenthos and their primary production with $C^{14}$ method and carried out pigment analysis with HPLC in an estuarine mudflat of the Ganghwa Island, Korea from May 2002 to April 2004. The abundances of microphytobenthos were higher at the middle than upper part and lower part of intertidal flat. Abundances of microphytobenthos ranged from $2.3{\times}10^5\;cells\;cm^{-2}$ to $140.9{\times}10^5\;cells cm^{-2}$. The bloom of microphytobenthos was observed in the early spring and then it decreased from spring to summer and autumn. The pennate diatom was a predominated group among the microphytobenthos in this area. The dominant species were Paralia sulcata, Cylindrotheca closterium and Nitzschia sp.. Nitzschia sp. and Cylindrotheca closterium were predominant in February. The results of pigment analysis suggest the presence of diatoms, euglenophytes, chlorophytes, cyanobacteria, cryptophytes, chrysophytes, prymnesiophytes, dinoflagellates and prasinophytes. The biomass of microphytobenthos ranged from 1.18 to 34.25 mg chl-a $m^{-2}$, with a mean of 7.60 mg chl-a $m^{-2}$. The mean ratio of Fuco/Chl a was 0.7 which indicates that most of biomasses of microphytobenthos were due to diatoms. The ratios of Chl b/Chl a ranged from 0 to 0.82(with a mean of 0.17), implying that euglenophytes and chlorophytes lived together in special period seasonally. Temporal variation of primary production ranged from 4.2 to 113.0 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$(mean value was 33.9 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$ and initial slope$({\alpha})$ was measured from 0.002-0.005$(mgC\;mgchl-a^{-1}\;hr^{-1}){\cdot}({\mu}E\;m^{-2}\;s^{-1})^{-1}$. Assimilation number$(P_m)$ was in the range of 0.50-1.32 $mgC{\cdot}mgChl-a{\cdot}hr^{-1}$ and daily primary production ranged from 20.9 to 678.1 $mgC{\cdot}m^{-2}{\cdot}d^{-1}$(mean value was 206.72 $mgC{\cdot}m^{-2}{\cdot}^{-1}$).

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data (원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Eom, Jin-Ah;Roh, Seung-Mok;Noh, Jae-Hoon
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2010
  • Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

Seasonal Variations of Microphytobenthos and Growth of Ruditapes philippinarum at Jeongsanpo and Hwangdo Tidal flat, Taean, Korea (한국 태안 정산포와 황도갯벌에서 저서미세조류의 계절적 변동과 바지락의 생장)

  • Park, Seo Kyoung;Kim, Bo Yeon;Oh, Joung-Soon;Park, Kwang-Jae;Choi, Han Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.884-894
    • /
    • 2015
  • To examine the relationship between microphytobenthos biomass and the condition index of Ruditapes philippinarum (manila clam), field observations were conducted seasonally at the tidal flats of Jeongsanpo and Hwangdo, Taean, Korea from February to November, 2012. A total of 122 species of microphytobenthos were identified over the study period with 85 species (30-45 species in season) at Jeongsanpo and 92 species (32-57 species) at Hwangdo. Chlorophyll a concentrations and cell number of microphytobenthos were $79.75mg/m^2$ and $3,255cells/cm^2$ at Jeongsanpo, and $151.50mg/m^2$ and $15,943cells/cm^2$ at Hwangdo, respectively. The dominant species were slightly different: Cylindrotheca closterium, Fallacia forcipata, Fogedia sp., Gyrosigma sp., and Navicula sp. at Jeongsanpo and C. closterium, Detonula pumila, Diploneis sp., Navicula sp. and Merismopedia sp. at Hwangdo tidal flat. Paralia sulcata was the representative species based on cell number at the two study sites. The number of microphytobenthos identified from the digestive organs of manila clams seasonally varied from 18 to 31 species at Jeongsanpo and dominant genus were Amphora, Navicula, Nitzschia and Paralia sulcata. At Hwangdo, the species number of microphytobenthos found in the digestive organs of manila clams were in the range of between 19 and 25 species in season and the dominant genus were Actinocyclus, Amphora, Coscinodiscus, Diploneis, Gyrosigma, Navicula, and Diploneis. The condition index of manila clams were greater at Hwangdo (0.57) than at Jeongsanpo (0.42). Present results could support that the condition index of manila clams is positively correlated with the species richness and chlorophyll a contents of microphytobenthos.

Effect of Attachment Substrate Size on the Growth of a Benthic Microalgae Nitzschia sp. in Culture Condition (실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschia sp.의 성장 특성)

  • Oh, Seok-Jin;Yoon, Yang-Ho;Yamamoto, Tamiji;Yang, Han-Soeb
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • To understand the effect of attachment substrate on the growth of benthic microalgae, we experimentally investigated the growth of benthic microalgae Nitzschia sp. (Jinhae Bay strain) with additions of glass beads in different sizes. The glass beads used in this study are 0.09-0.15 mm (G1), 0.25-0.50 mm (G2), 0.75-1.00 mm (G3) and 1.25-1.65 mm (G4). No addition of glass beads used as controls. Highest specific growth rate (0.37/day) and maximum cell density ($9,232{\pm}840$ cells/mL) of Nitzschia sp. showed at the smallest glass beads (G1), and the specific growth rate and maximum cell density were decreasing with increasing size of glass beads (specific growth rate and maximum cell density of G4 was 0.24/day and $6,397{\pm}524$ cells/mL, respectively). Moreover, specific growth rate of the control experiment (0.23/day) was significantly lower than their of G1 to G3 experiment. The results indicated that the attachment substrate for benthic microalgae as Nitzschia sp. is important factor which affecting the growth rate as well as cell density. Therefore, the physiological experiment of benthic microalgae seems to be necessary to preliminary experiment, which is addition or not of the attachment suitable substrate and the grain size for the target species of benthic microalgae.

  • PDF

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

Effects of Temperature and Salinity on the Growth of Marine Benthic Microalgae for Phytoremediation (식물환경복원을 위한 저서미세조류의 성장에 미치는 수온과 염분의 영향)

  • Kwon, Hyeong-Kyu;Oh, Seok-Jin;Yang, Han-Soeb;Yu, Young-Moon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.130-137
    • /
    • 2011
  • To improve sediment quality in eutrophic coastal areas using benthic microalgae, we examined the effects of temperature and salinity on the growth of benthic microalgae Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. isolated from Sujeong Bay, Korea, using batch cultures. The maximum growth rates were obtained under the combined temperature and salinity conditions of $25^{\circ}C$ and 25 psu for Achnanthes sp. (0.60 /day), $15^{\circ}C$ and 25 psu for Amphora sp. (0.56 /day), $20^{\circ}C$ and 30 psu for Navicula sp. (0.53 /day), $20^{\circ}C$ and 25 psu for Nitzschia sp. (0.48 /day). Considering these results of temperature and salinity conditions required for optimum growth (${\geq}$ 70% of maximum specific growth rate), Amphora sp. Navicula sp. and Nitzschia sp. were characterized as eurythermal and euryhaline species, while Achnanthes sp., which exhibited extremely low survival at low temperature. In conclusion, Amphora sp., Navicula sp. and Nitzschia sp. may be useful species for phytoremediation, to control eutrophication and hypoxic water and thus improve environmental conditions of polluted coastal areas.

Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea (강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압)

  • Yang, Eun-Jin;Choi, Joong-Ki;Yoo, Man-Ho;Cho, Byung-Cheol;Choi, Dong-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.