DOI QR코드

DOI QR Code

Preparation of $WO_3$ Films by CVD and their Application in Electrochromic Devices

화학기상 증착법을 이용하여 제조된 텅스텐 산화막의 전기변색 소자 응용 연구

  • Jung, Hun (Department of Chemical Engineering and The research Institute of Catalysis) ;
  • SunWoo, Changshin (School of Bioscience and Technology, Chonnam National University) ;
  • Kim, Do-Heyoung (Department of Chemical Engineering and The research Institute of Catalysis)
  • 정훈 (전남대학교 응용화학공학부 촉매 연구소) ;
  • 선우창신 (전남대학교 생명과학기술학부) ;
  • 김도형 (전남대학교 응용화학공학부 촉매 연구소)
  • Published : 2011.08.01

Abstract

A study on chemical vapor deposition(CVD) of $WO_3$ and the electrochromic properties of the CVD $WO_3$ films have been carried out. The crystalinity, purity, and growth rate of the films depending on substrate temperatures are investigated. The highest growth rate is $8{\mu}m/min$ at the substrate temperatures above $300^{\circ}C$ and the estimated activation energy for overall film growth is about 45.9 kJ/mol at the temperatures of $225{\sim}275^{\circ}C$, where the CVD process is controlled by a surface reaction kinetics. The films grown below $275^{\circ}C$ are amorphous, while those deposited above $300^{\circ}C$ are crystalline. The effects of thickness and deposition temperature of the $WO_3$ films on electrochromic activity are also investigated. The coloration efficiency of the films increases with increase in film thickness and decrease in deposition temperature.

본 연구에서는 화학 증착법을 이용하여 텅스텐 산화물을 제조한 후 기판 온도에 따른 성막 특성을 분석하고, 성막 된 텅스텐 산화물을 전기 변색 소자 제조에 응용하여 소자 특성을 살펴보았다. 증착 온도 $300^{\circ}C$ 이상에서 최대 성막속도($8{\mu}m/min$)를 얻을 수 있었으며, $275^{\circ}C$ 이하에서는 표면 반응 율속 특성을 보였고 이때 겉보기 활성화 에너지 값은 45.9 kJ/mol이였다. 성막 된 텅스텐 산화물은 $275^{\circ}C$ 이하에서는 비정질막이, 그 이상 온도에서는 결정질 막이 형성되었다. 전기 변색 소자 적용시 유리한 비정질막이 성막되는 조건에서 증착 온도 및 두께 변화에 따른 전기 변색 특성을 평가하였다. 증착 온도가 동일한 경우 두께가 두꺼울수록 그리고 두께가 일정한 경우는 증착 온도가 낮을수록 변색 효율 측면에서 유리한 결과를 얻었다.

Keywords

References

  1. Azens, A., Vaivars, G., Veszelei, M., Kullman, L. and Granqvist, C. G., "Electrochromic Devices Embodying W Oxide/Ni Oxide Tandem Films," J. Appl. Phys., 89, 7885-7887(2001). https://doi.org/10.1063/1.1337091
  2. Azens, A., Granqvist, C. G. and Kullman, L., "Color-modifying Treatment of Thin Films," PCT Int. Appl. WO 2001027219 A1 20010419(2001).
  3. Niklasson, G. A. and Granqvist, C. G., "Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These," J. Mater. Chem., 17, 127-156(2007). https://doi.org/10.1039/B612174H
  4. Lampert, C. M. and Granqvist, C. G., Large-area Chromogenics: Materials and Devices for Transmittance Control, SPIE Opt. Engr. Press, Bellingham (1990).
  5. Granqvist, C., Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam (1995).
  6. Gellings, P. J. and Bouwmeeter, H. J. M., in C. G. Granqvist(Ed.), The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 587(1997).
  7. Passerini, S., Scrosati, B., Gorenstein, A., Andersson, A. M. and Granqvist, C. G., "An Electrochromic Window Based on Lithium Tungsten Oxide ($LixWO_{3}$)/poly (ethylene oxide)lithium Perchlorate/($( PEO)_{8}LiClO_{4}$) Nickel Oxide (NiO)," J. Electrochem. Soc., 136, 3394-3395(1989). https://doi.org/10.1149/1.2096458
  8. Passerini, S., Scrosati, B. and Gorenstein, A., "The Intercalation of Lithium in Nickel Oxide and Its Electrochromic Properties," J. Electrochem. Soc., 137, 3297-3300(1990). https://doi.org/10.1149/1.2086202
  9. Passerini, S. and Scrosati, B., "Characterization of Nonstoichiometric Nickel Oxide Thin-film Electrodes," J. Electrochem. Soc., 141, 889-895(1994). https://doi.org/10.1149/1.2054853
  10. Porqueras, I. and Bertran, E., "Electrochromic Behavior of Nickel Oxide Thin Films Deposited by Thermal Evaporation," Thin Solid Films, 398, 41-44(2001).
  11. Velevska, J. and Ristova, M., "Electrochromic Properties of NiOx Prepared by Low Vacuum Evaporation," Solar Energy Mat. & Solar Cells, 73, 131-139(2002). https://doi.org/10.1016/S0927-0248(01)00118-0
  12. Rougier, A. and Blyr, A., "Electrochromic Properties of Vanadium Tungsten Oxide Thin Films Grown by Pulsed Laser Deposition," Electrochimica Acta, 46, 1945-1950(2001). https://doi.org/10.1016/S0013-4686(01)00382-6
  13. Kirss, Rein U. and Meda, L., "Chemical Vapor Deposition of Tungsten Oxide," Applied Organometal. Chem., 12, 155-160(1998). https://doi.org/10.1002/(SICI)1099-0739(199803)12:3<155::AID-AOC688>3.0.CO;2-Z
  14. Park, J. Y. Ahn, K. S., Nah, Y. C., Shim, H. S. and Sung, Y.-E., "Electrochemical and Electrochromic Properties of Ni Oxide Thin Films Prepared by a Sol-Gel Method," J. Sol-Gel Sci. Technol., 31, 323-328(2004). https://doi.org/10.1023/B:JSST.0000048011.77244.5e
  15. Chung, S. J., Choi, Y. S. and Cho, S, M., "Preparation of Transparent Conducting ZnO Thin Film and Its Application for Electrochromic Windows as Transparent Conducting Electrodes," HWAHAK KONGHAK, 36, 132-138(1998).
  16. Choi, Y., Cho W.-I., Cho, B.-W. and Yun, K.-S., "Electrochromic Display Device of Tungsten Oxide and Prussian Blue Thin Film Using Polymer Electrolyte," HWAHAK KONGHAK, 30, 55-64(1992).
  17. Ashrit, P. V., "Dry Lithiation Study of Nanocrystalline, Polycrystalline and Amorphous Tungsten Trioxide Thin-films," Thin Solid Films, 385, 81-88(2001). https://doi.org/10.1016/S0040-6090(00)01895-2
  18. Wang, H., Zhang, M., Yang, S., Zhao, L. and Ding, L., "Preparation and Properties of Electrochromic Tungsten Oxide Film," Solar Energy Mat. & Solar Cells, 43, 345-352(1996). https://doi.org/10.1016/0927-0248(96)00016-5
  19. Antonaia, A., Polichetti, T., Addonizik, M. L., Aprea, S., Minarini, C. and Rubino, A., "Structural and Optical Characterization of Amorphous and Crystalline Evaporated $WO_{3}$ Layers," Thin Solid Films, 354, 73-81(1999). https://doi.org/10.1016/S0040-6090(99)00567-2
  20. Bernard, M. C., Goff, A. H. and Zeng, W., "Elaboration and Study of a PANI/PAMPS/$WO_{3}$ All Solid-state Electrochromic Device," Electrochim. Acta, 44, 781-796(1998). https://doi.org/10.1016/S0013-4686(98)00238-2

Cited by

  1. Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.483