DOI QR코드

DOI QR Code

Comparison of Stability on the Nano-crystalline Embedded InGaZnO and Amorphous InGaZnO Oxide Thin-film Transistors

나노결정 InGaZnO 산화물 박막트랜지스터와 비결정 InGaZnO 산화물 박막트랜지스터의 소자 신뢰성에 관한 비교 연구

  • Shin, Hyun-Soo (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Ahn, Byung-Du (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Rim, Yoo-Seung (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • 신현수 (연세대학교 전기전자공학과) ;
  • 안병두 (삼성전자주식회사 LCD 사업부) ;
  • 임유승 (연세대학교 전기전자공학과) ;
  • 김현재 (연세대학교 전기전자공학과)
  • Received : 2011.04.05
  • Accepted : 2011.05.13
  • Published : 2011.06.01

Abstract

In this paper, we have compared amorphous InGaZnO (a-IGZO) thin-film transistor (TFT) with the nano-crystalline embedded-IGZO ($N_c$-embedded-IGZO) TFT fabricated by solid-phase crystallization (SPC) technique. The field effect mobility (${\mu}_{FE}$) of $N_c$-embedded-IGZO TFT was 2.37 $cm^2/Vs$ and the subthreshold slope (S-factor) was 0.83 V/decade, which showed lower performance than those of a-IGZO TFT (${\mu}_{FE}$ of a-IGZO was 9.67 $cm^2/Vs$ and S-factor was 0.19 V/decade). This results originated from generation of oxygen vacancies in oxide semiconductor and interface between gate insulator and semiconductor due to high temperature annealing process. However, the threshold voltage shift (${\Delta}V_{TH}$) of $N_c$-embedded-IGZO TFT was 0.5 V, which showed 1 V less shift than that of a-IGZO TFT under constant current stress during $10^5$ s. This was because there were additionally less increase of interface trap charges in Nc-embedded-IGZO TFT than a-IGZO TFT.

Keywords

References

  1. P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett., 82, 1117 (2003). https://doi.org/10.1063/1.1553997
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 89, 112123 (2006). https://doi.org/10.1063/1.2353811
  4. R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett., 82, 733 (2003). https://doi.org/10.1063/1.1542677
  5. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). https://doi.org/10.1063/1.1843286
  6. D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H. Y. Chu, Appl. Phys. Lett., 93, 142111 (2008). https://doi.org/10.1063/1.2998612
  7. C. J. Kim, S. Kim, J. H. Lee, J. S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett., 95, 252103 (2009). https://doi.org/10.1063/1.3275801
  8. P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, Electrochem. Solid State Lett., 11,248 (2009).
  9. P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, IEEE Trans. on Electron Devices 55, 954 (2008). https://doi.org/10.1109/TED.2008.916717
  10. M. K. Ryu, S. Yang, S. H. Ko Park, C. S. Hwang, and J. K. Jeong, Appl. Phys. Lett., 95, 173508 (2009). https://doi.org/10.1063/1.3257726
  11. J. Y. Kwon, J. S. Jung, K. S. Son, K. H. Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. Koo, and S. Y. Lee, Appl. Phys. Lett., 97, 183503 (2010). https://doi.org/10.1063/1.3513400
  12. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008). https://doi.org/10.1063/1.2990657
  13. A. Suresh and J. F. Muth, Appl. Phys. Lett., 92, 033502 (2008). https://doi.org/10.1063/1.2824758
  14. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys. Lett., 93, 093504 (2008). https://doi.org/10.1063/1.2977865
  15. S. Lee, K. Jeon, J. H. Park, S. Kim, D. Kong, D. M. Kim, D. H. Kim, S. Kim, S. Kim, J. Hur, J. C. Park, I. Song, C. J. Kim, Y. Park, and U. I. Jung, Appl. Phys. Lett., 95, 132101 (2009). https://doi.org/10.1063/1.3237169
  16. K. Nomura, T. Kamiya, Y. Kikuchi, M. Hirano, and H. Hosono, Thin Solid Films, 518, 3012 (2010). https://doi.org/10.1016/j.tsf.2009.09.193
  17. E. G. Chong, K. C. Jo, S. H. Kim, and S. Y. Lee, J. KIEEME, 23, 349 (2010).
  18. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim and H. J. Kim, Appl. Phys. Lett., 94, 233501 (2009). https://doi.org/10.1063/1.3151827
  19. C. Y. Kagan and P. W. E. Andry, Thin Film Transistors (Dekker, New York, 2003) p. 87.
  20. D. Y. Cho, J. W. Song, Y. C. Shin, C. S. Hwang, W. S. Choi, and J. K. Jeong, Electrochem. Solid State Lett., 12, 208 (2009). https://doi.org/10.1149/1.3110032
  21. E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, IEEE Trans. Elec. Dev., 11, 112 (2011).

Cited by

  1. Effect of SiO2Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor vol.25, pp.1, 2012, https://doi.org/10.4313/JKEM.2012.25.1.24