• 제목/요약/키워드: Nano-crystal

검색결과 628건 처리시간 0.04초

A New Xenon Plasma Flat Fluorescent Lamp Enhanced with MgO Nano-Crystals for Liquid Crystal Display Applications

  • Lee, Yang-Kyu;Heo, Seung-Taek;Lee, You-Kook;Lee, Dong-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.186-189
    • /
    • 2010
  • Nano-sized MgO single crystal powders have recently been reported to emit ultraviolet by stimulation of electrons in a vacuum. In this study, nanocrystalline MgO powders were applied to a xenon plasma flat fluorescent lamp (FFL) for a liquid crystal display backlight to improve its emission efficiency through the extra ultraviolet from the nano-MgO crystals. For comparison, a MgO nano-thin film was applied directly on the phosphors inside a lamp panel through e-beam evaporation. Adding MgO nano-crystal powders to the phosphors improved the luminance and efficiency of FFLs by around 20% and MgO nano-crystal coverage of 40% of the phosphor provided the best FFL emission characteristics; however, application of MgO thin film to the phosphors degraded the emission characteristics, even compared to FFLs without MgO. This was due to insufficient ultraviolet stimulation of the phosphors and the crystallinity and low secondary electron coefficient of the MgO.

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성 (Reflectivity characteristics of Ag nano-crystals grown by electroless plating)

  • 김신우
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.218-223
    • /
    • 2013
  • 본 연구에서는 LCD 또는 LED를 이용한 디스플레이 장치의 BLU 반사판으로 사용할 목적으로 무전해도금에 의하여 플라스틱 기판위에 성장되어진 은 나노코팅의 반사율 특성을 조사하였다. 은 나노코팅의 미세구조는 아주 미세한 나노크기의 은 결정들로 이루어진 다결정 나노코팅인 것을 확인할 수 있었으며 코팅 층의 두께가 증가함에 따라 환원, 석출된 은 나노결정입자의 크기도 비례하여 증가되었다. 은 나노코팅의 두께가 증가함에 따라 가시광선 영역의 반사율이 감소하였으며 파장이 짧을수록 반사율의 감소가 더 심하였다. 나노코팅의 두께 증가에 따른 반사율의 감소는 환원 석출된 은나노결정의 크기와 밀접하게 관련된 것으로 은 결정입자가 클수록 요철의 정도가 심하여 반사율이 감소하는 것으로 생각되어진다. 그래서 가능한 미세한 은 나노결정을 환원, 석출시키고 코팅두께를 얇게 하는 것이 반사율 관점에서 바람직한 것으로 판단되어진다.

액정의 Kerr 효과를 이용한 액정표시소자 연구 (Study on Liquid Crystal Displays Utilizing Kerr effect)

  • 김민수;강병균;정준호;하경수;송은경;윤석인;김미영;이명훈;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.295-296
    • /
    • 2009
  • There are various application of liquid crystal materials to devices, especially, blue phase liquid crystal (BPLC) and nano-structured liquid crystal mixture have been studied recently because BPs existing temperature range has been expanded by polymer-stabilization and liquid crystal has been confined in room which has certain coherence length so that their particular characters, such as fast response time and optically isotropic state at no electric field, could apply to advanced liquid crystal display devices. However, there is an crucial problem which is high operating voltage from low Kerr constant and limited electric field utilization using in-plain electric field. In this paper, we will analyze cell structure in the way of using electric field and show effective electric field utilization to reduce operating voltage.

  • PDF

Advanced Nanoimprinting Material for Liquid Crystal Alignment

  • Gwag, Jin-Seog;Oh-e, Masahito;Yoneya, Makoto;Yokoyama, Hiroshi;Satou, H.;Itami, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.534-537
    • /
    • 2007
  • To promote liquid crystal application of nanoimprint lithography, a polymer with new concept is proposed. The material consists of a polyamic acid for good LC alignment and an epoxy resin for good imprinting. The result of sum-frequency generation (SFG) vibrational spectroscopy proves that this material is a functionally gradient material. This material shows excellent capability as a nanoimprinting material as well as an LC alignment layer.

  • PDF

Quantum Dot Based Mode-Locked Diode Lasers and Coherent Buried Heterostructure Photonic Crystal Nano Lasers

  • 김지명
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.122-122
    • /
    • 2013
  • In this talk, some optical properties of quantum dot based mode-locked diode lasers and photonic crystal nano lasers will be discussed. Linewidth enhancement factor, chirp and interband injection locking technique of quantum dot mode-locked lasers will be presented. Also various types of photonic crystal buried heterostructure lasers toward coherent nano laser will be covered as well.

  • PDF

나노 임프린트 공정에 의한 광자결정 도파로 제조공정 (Nano imprinting lithography fabrication for photonic crystal waveguides)

  • 정은택;김창석;정명영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

초음파 나노표면개질기술의 특성과 활용방안 연구 (A Study on the Ultrasonic Nano Crystal Surface Modification(UNSM) Technology and It's Application)

  • 편영식;박정현;조인호;김창식;서창민
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.190-195
    • /
    • 2009
  • All the failure in fatigue of torsion, bending and rolling contact, and in sliding wear begins mostly from surface. So much efforts have been invested to the surface technology which deal these problems during past decades, but the industrial demand keeps growing and more significant requirements are added to researchers and engineers. Nano crystal surface modification technology which makes the surface layers into nano crystalline, induces big and deep compressive residual stress, increases surface hardness, improves surface hardness, and make micro dimples structure on surface is an emerging technology which can break limits of current surface technology and relieve the burden of researchers and engineers. In this study, a nano crystal surface modification technology which is calling UNSM(Ultrasonic nano crystal surface modification) technology, is introduced and how it has been applied to industry to solve these failure problems is explained.