DOI QR코드

DOI QR Code

Exploring a Teaching Method of Limits of Functions with Embodied Visualization of CAS Graphing Calculators

CAS 그래핑 계산기의 임베디드 시각화를 통한 함수의 극한 지도 방안 탐색

  • Cho, Cheong-Soo (Department of Mathematics Education, Yeungnam University)
  • Received : 2011.01.01
  • Accepted : 2011.01.27
  • Published : 2011.02.15

Abstract

The purpose of this study is to explore a teaching method of limits of functions with more intuitive and visual of CAS graphing calculators rather than with the rigorous ${\epsilon}-{\delta}$ method. Texas Instruments Voyage200 CAS graphing calculators are used for studying the possibility of the use of technology in calculus course. For this, various related theoretical constructs are reviewed: concept image, concept definition, cognitive conflict, the use of visualization of technology for calculus concepts, the theory of APOS, and local straightness. Based on such theoretical constructs this study suggests a teaching method of limits of functions with embodied visualization of CAS graphing calculators.

본 연구는 미적분학의 입실론-텔타(${\epsilon}-{\delta}$)에 의한 엄밀한 함수의 극한값 구하기를 좀 더 직관적이며 시각화를 이용한 지도 방안을 탐색해 보고자 한다. 이를 위하여 Texas Instruments의 Voyage200 CAS 그래핑 계산기의 임베디드 시각화를 활용하여 미적분학 지도에서 공학 활용의 가능성을 제기하고자 한다. 이를 위하여 개념이미지와 개념정의, 인지적 갈등, 미적분 개념에 대한 공학과 시각화의 활용, APOS 이론, 그리고 국소적 수평화를 중심으로 이론적 고찰을 실시했다. 이러한 이론적 고찰을 토대로 CAS 그래핑 계산기의 임베디드 시각화를 활용하여 함수의 극한을 구하는 지도 방안을 구현하였다.

Acknowledgement

Supported by : 영남대학교

References

  1. 윌리엄 던햄 (2004). 수학의 천재들(조정수 번역.). 서울: 경문사. (원본출판 1990)
  2. Artigue, M. (1991). Analysis. In D. Tall(Ed.), Advanced mathematical thinking(pp. 167-198). Kluwer Academic Publishers.
  3. Cornu. B. (1991). Limits. In D. Tall(Ed.), Advanced mathematical thinking(pp. 153-166). Kluwer Academic Publishers.
  4. Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15, 167-192. https://doi.org/10.1016/S0732-3123(96)90015-2
  5. Dubinsky, Ed., Weller, K., Mcdonale, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational Studies in Mathematics, 58, 335-359. https://doi.org/10.1007/s10649-005-2531-z
  6. Lakoff, G., & Nunez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
  7. Monaghan, J. D. (1986). Adolescents' understanding of limits and infinity. Unpublished doctoral dissertation, Warwick University, U.K.
  8. Pinto, M. M. F. (1998). Students' understanding of real analysis. Unpublished doctoral dissertation, Warwick University, U.K.
  9. Smith D. A., & Moore, L. C. (1996). Calculus: Modeling and application. Boston: Houghton Mifflin.
  10. Tall, D. (1980). Mathematical intuition, with special reference to limiting processes. Proceedings of the Fourth International Conference for the Psychology of Mathematics Education, 170-176.
  11. Tall, D. (1993). Real mathematics, rational computers and complex people. Proceedings of the fifth annual International Conference on Technology in College Mathematics Teaching(pp. 243-258). Reading, MA: Addison-Wesley.
  12. Tall, D. (2001). Cognitive development in advanced mathematics using technology. Mathematics Education Research Journal, 12, 196-218.
  13. Tall, D. (2002). Natural and formal infinities. Educational Studies in Mathematics, 48, 199-238.
  14. Tall, D., Smith, D., & Piez, C. (2008). Technology and calculus. In M. K. Heid & G. W. Blume(Eds.), Research on technology and the teaching and learning of mathematics: Volume 1(pp. 207-258). Charlotte, NC: Information Age Publishing.
  15. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. https://doi.org/10.1007/BF00305619
  16. Vinner, S. (1991). The role of definitions in the teaching and learning mathematics. In D. Tall(Eds.), Advanced mathematical thinking(pp. 65-81). Dordrecht: Kluwer Academic Publishers.
  17. Williams, S. (1991). Models of limit held by college calculus students. Journal for Research in Mathematics Education, 22, 219-236. https://doi.org/10.2307/749075
  18. Wood, N. G. (1992). Mathematical analysis: A comparison of students development and historical development. Unpublished doctoral dissertation, Cambridge University, U.K.