• Title/Summary/Keyword: limit of function

Search Result 1,138, Processing Time 0.028 seconds

Deflection Limit on Vibration Serviceability of High-speed Railway Bridges Considering the Exposed Time Duration (진동지속시간을 고려한 고속철도교량의 진동 사용성 처짐 한계)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1444-1451
    • /
    • 2010
  • This paper aims for proposed the deflection limit on vibration serviceability of high-speed railway bridges considering the exposed time duration when a train passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them from the bridge-train transfer function by moving constant force analysis. Therefore it was estimated possible to induce the comfort deflection limit of railway bridge by using bridge-train transfer function. The deflections by moving force of single span bridge and continuous bridge were assumed as sine and haversine wave. The deflection limit on vibration serviceability of high-speed railway bridges considering the exposed time duration can be expanded using bridge-train transfer function and bridge comfort limit considering serviceability due to bridge vibration. And it was compared to other allowable deflection limits of railway bridge design specifications.

  • PDF

Multicut high dimensional model representation for reliability analysis

  • Chowdhury, Rajib;Rao, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.651-674
    • /
    • 2011
  • This paper presents a novel method for predicting the failure probability of structural or mechanical systems subjected to random loads and material properties involving multiple design points. The method involves Multicut High Dimensional Model Representation (Multicut-HDMR) technique in conjunction with moving least squares to approximate the original implicit limit state/performance function with an explicit function. Depending on the order chosen sometimes truncated Cut-HDMR expansion is unable to approximate the original implicit limit state/performance function when multiple design points exist on the limit state/performance function or when the problem domain is large. Multicut-HDMR addresses this problem by using multiple reference points to improve accuracy of the approximate limit state/performance function. Numerical examples show the accuracy and efficiency of the proposed approach in estimating the failure probability.

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Multiple input describing function analysis of non-classical aileron buzz

  • Zafar, Muhammad I.;Fusi, Francesca;Quaranta, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.203-218
    • /
    • 2017
  • This paper focuses on the computational study of nonlinear effects of unsteady aerodynamics for non-classical aileron buzz. It aims at a comprehensive investigation of the aileron buzz phenomenon under varying flow parameters using the describing function technique with multiple inputs. The limit cycle oscillatory behavior of an asymmetrical airfoil is studied initially using a CFD-based numerical model and direct time marching. Sharp increases in limit cycle amplitude for varying Mach numbers and angles of attack are investigated. An aerodynamic describing function is developed in order to estimate the variation of limit cycle amplitude and frequency with Mach number and angle of attack directly, without time marching. The describing function results are compared to the amplitudes and frequencies predicted by the CFD calculations for validation purposes. Furthermore, a limited sensitivity analysis is presented to demonstrate the potential of the approach for aeroelastic design.

A study on Korea road conditions assessment for Speed Limit Information Function(SLIF) (제한속도정보제공장치(SLIF)에 대한 한국 환경 평가 분석)

  • Lee, Hwasoo;Sim, Jihwan;Yim, Jonghyun;Lee, Hongguk;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2015
  • Exceeding the speed limit during vehicle driving is a key factor in the severity of lots of road accidents, and SLIF(Speed Limit Information Function) application is in the initial phase in Korea. SLIF helps the drivers to observe a speed limit when they are driving by providing alert and informing the current limit speed information based on external data using camera and/or digital map, for that reason, environmental conditions could be causes of SLIF malfunctions. In this study, design adequacy analysis of SLIF in respect of false recognition as the Korea traffic environment has been performed. As tentative results, road conditions and structure of speed limit sign as well as system performance often caused misrecognition.

ON THE RELATIONSHIP BETWEEN STABLE DOMAINS AND CRITICAL ORBITS

  • Yoo, Seung Jae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.113-121
    • /
    • 2003
  • This paper is concerned with some properties of stable domains and limit functions. Using the relationship between cycles of periodic stable domains and orbits of critical points and using the Sullivan theorem [19], we prove that the value of a constant limit function in some stable domain for a rational function f of degree at least two lies in the closure of the set of critical orbits of f.

  • PDF

The Asymptotic Properties of Mean Residual Life Function on Left Truncated and Right Censoring Model

  • Moon, Kyoung-Ae;Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 1997
  • The estimation procedure of mean residual life function has been placed an important role in the study of survival analysis. In this paper, the product limit estimator on left truncated and right censoring model is proposed with asymptotic properties. Also, the small sample properties are investigated through the Monte Carlo study and the proposed product limit type estimator is compared with ordinary Kaplan-Meier type estimator.

  • PDF

Determination of Optimal Mean Value and Screening Limit for a Production Process with Logistic Function (로지스틱 함수를 갖는 생산공정에 대한 최적공정평균 및 스크리닝 한계선의 결정)

  • Hong, Sung Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Individual items are produced continuously from an industrial process. Each item is checked to determine whether it satisfies a lower screening limit for the quality characteristic which is the weight of an expensive ingredient. If it does, it is sold at a regular price; if it does not, it is reprocessed or sold at a reduced price. The process mean may be adjusted to a higher value in order to reduce the proportion of the nonconforming items. Using a higher process mean, however, may result in a higher production cost. In this paper, the optimal process mean and lower screening limit are determined in situations where the probability that an item functions well is given by a logistic function of the quality characteristic. Profit models are constructed which involve four price/cost components; selling prices, cost from an accepted nonconforming item, and reprocessing and inspection costs. Methods of finding the optimal process mean and lower screening limit are presented and numerical examples are given.

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.