DOI QR코드

DOI QR Code

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate

냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구

  • Lee, Jung-Ho (Dept. of Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Yu, Cheong-Hwan (Division of Home Appliance, LG Electronics Co.) ;
  • Park, Sang-Jin (Dept. of Thermal Systems, Korea Institute of Machinery and Materials)
  • 이정호 (한국기계연구원 열유체시스템연구) ;
  • 유청환 (LG 전자 HA 사업본부) ;
  • 박상진 (한국기계연구원 열유체시스템연구)
  • Received : 2010.05.26
  • Accepted : 2011.02.20
  • Published : 2011.05.01

Abstract

Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.

수분류 스프레이 냉각은 $900^{\circ}C$ 이상의 고온에서 강판을 냉각하는데 매우 중요한 기술이다. 본 연구는 냉각수온이 고온 강판의 수분류 스프레이 냉각에 미치는 영향을 고찰하였다. 이 때의 열유속은 시편, 카트리지히터, 열전대의 조합으로 고안된 열유속게이지를 제작하여 엄밀하게 측정되었다. 스프레이는 fullcone 노즐로부터 생성되고 냉각실험은 일정한 스프레이 질량유속과 노즐과 표면 사이의 거리 조건에서 수행되었다. 냉각수온의 효과는 $5^{\circ}C$에서 $45^{\circ}C$까지 다섯 가지의 서로 다른 수온에 대한 수분류 스프레이 냉각의 열전달 현상을 비교 및 평가하였다. 여기서 열유속곡선과 열전달계수는 고온 강판의 냉각공정에서 실제 스프레이 냉각을 위한 기본 데이터로 활용될 수 있다.

Keywords

References

  1. Mizikar, I., 1970, “Spray Cooling Investigation for Continuous Casting of Billets and Blooms,” Iron and Steel Engineer, pp. 53-70.
  2. Bolle, L. and Moureau, J. C., 1982, “Spray Cooling of Hot Surfaces,” Multiphase Science and Technology, Vol. 1, pp. 1-97. https://doi.org/10.1615/MultScienTechn.v1.i1-4.10
  3. Hoogendoorn, C. J. and den Hond, R., 1974, “Leidenfrost Temperature and Heat Transfer Coefficients for Water Sprays Impinging on a Hot Surface,” Proceedings of 5th International Heat Transfer Conference, Vol. 4, pp. 135-138.
  4. Choi, K. J. and Yao, S. C., 1987, “Mechanism of Film Boiling Heat Transfer of Normally Impacting Spray,” International Journal of Heat and Mass Transfer, Vol. 30, No. 2, pp. 311-318. https://doi.org/10.1016/0017-9310(87)90119-0
  5. Deb, S. and Yao, S. C., 1989, “Analysis of Film Boiling Heat Transfer of Impinging Sprays,” International Journal of Heat and Mass Transfer, Vol. 32, No. 11, pp. 2099-2112. https://doi.org/10.1016/0017-9310(89)90117-8
  6. Chen, S-J. and Tseng, A. A., 1992, “Spray and Jet Cooling in Steel Rolling,” International Journal of Heat and Fluid Flow, Vol. 13, No. 4, pp. 358-369. https://doi.org/10.1016/0142-727X(92)90006-U
  7. Mitsutsuka, M. and Fukuda, K., 1989, “Effect of Water Temperature on Cooling Capacity in Water Cooling of Hot Steels,” Tetsu-to-Hagane, Vol. 75, No. 7, pp. 1154-1161 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.75.7_1154
  8. Kimura, M., Tanaka, Y., Yoshida, H., Uemura, N.,Ohbu, M. and Sekine, T., 1984, “Development of Uniform Controlled Cooling Method : Multi-Purpose Accelerated Cooling System III,” Tetsu-to-Hagane, Vol. 70, No. 5, S375 (in Japanese).
  9. Lee, J., 2010, “Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect,” Trans. of the KSME (B), Vol. 34, No. 2, pp. 203-212. https://doi.org/10.3795/KSME-B.2010.34.2.203
  10. Lee, J., 2008, “Development in In-Line Heat Flux Curve of Accelerated Cooling Machine and its Application in Plate Mills,” POSCO Technical Report 2008X017, Pohang, Korea, pp. 64-79.
  11. Beck, J. V., Blackwell, B. and St. Clair, Jr., C.R., 1985, Inverse Heat Conduction : Ill-posed Problems, A Wiley-Interscience, New York, pp. 108-217.
  12. Taler, J., 1996, “Theory of Transient Experimental Techniques for Surface Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 3733-3748. https://doi.org/10.1016/0017-9310(96)00015-4
  13. van Stralen, S. and Cole, R., 1979, Boiling Phenomena, McGraw-Hill, New York.
  14. Kim, J., 2007, “Spray Cooling Heat Transfer: The state of the art,” International Journal of Heat and Fluid Flow, Vol. 28, pp. 753-767. https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003