DOI QR코드

DOI QR Code

Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors

광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석

  • Kim, Chang-Hwan (Dept. of Mechanical and Mechatronics Engineering, Kangwon Nat'l Univ.) ;
  • Paek, In-Su (Dept. of Mechanical and Mechatronics Engineering, Kangwon Nat'l Univ.) ;
  • Yoo, Neung-Soo (Dept. of Mechanical and Mechatronics Engineering, Kangwon Nat'l Univ.) ;
  • Nam, Yoon-Su (Dept. of Mechanical and Mechatronics Engineering, Kangwon Nat'l Univ.)
  • 김창환 (강원대학교 기계메카트로닉스공학과) ;
  • 백인수 (강원대학교 기계메카트로닉스공학과) ;
  • 유능수 (강원대학교 기계메카트로닉스공학과) ;
  • 남윤수 (강원대학교 기계메카트로닉스공학과)
  • Received : 2010.07.05
  • Accepted : 2011.02.16
  • Published : 2011.05.01

Abstract

The dynamic behavior of a small wind-turbine blade was analyzed experimentally. Arrays of fiber Bragg-Grating (FBG) sensors attached along the blade were used to measure the strains of the blade surface. An impact test was performed to estimate the resonance frequencies of the fundamental and higher modes of the cantilever blade system developed for this study. The results were similar to the results for conventional strain gages. However, FBG sensors could sense modes that strain gauges could not sense. The strains obtained from the FBG sensor array were used to estimate displacement-mode shapes of the blade.

소형 풍력발전기 날개의 동적 거동에 대한 실험적 연구를 수행하였다. 날개를 따라 배열된 광 브레그 격자 (Fiber Bragg Grating) 센서를 이용하여 날개 표면에서의 변형률(strain)을 측정하였다. 충격 햄머 실험 (Impact Hammer Test)을 통하여, 1차 및 고차 모드의 공진주파수를 측정하였다. 광섬유 센서를 이용한 실험결과를 스트레인 게이지를 이용한 실험 결과와 비교한 결과 모드 주파수는 매우 유사하였다. 하지만, 광섬유 센서의 경우 스트레인 게이지에서 감지하지 못하는 모드를 감지할 수 있었다. 또한, 실험으로부터 얻은 변형률 모드를 이용하여 근사적으로 날개의 변위 모드를 추정하였다.

Keywords

References

  1. "E-126 Turns Into 7.5 MW Wind Turbine," Article Available Online at http://www.evwind.es/noticias.php?id_not=4017, Last Seen on June 30, 2010.
  2. “World's Largest Wind Turbine," Article Available Online at http://www.greenmuze.com/climate/energy/2287-worlds-largest-wind-turbine.html, Last Seen on June 30, 2010.
  3. Marin, J.C., Barroso, A., Paris, F. and Canas, J., 2009, "Study of Fatigue Damage in Wind Turbine Blades," Engineering failure analysis, Vol. 16, pp. 656-668. https://doi.org/10.1016/j.engfailanal.2008.02.005
  4. Mahri, Z.L. and Rouabah, M.S., 2002, "Fatigue Estimation for a Rotating Blade of a Wind Turbine," Rev. Energ. Ren., Vol. 5, pp. 39-47.
  5. Bossanyi, E.A., 2002, "Individual Blade Pitch Control for Load Reduction," Wind Energy, Vol. 6, pp. 119-128.
  6. Bossanyi, E.A., 2005, "Further Load Reductions with Individual Pitch Control," Wind Energy, Vol. 8, pp. 481-485. https://doi.org/10.1002/we.166
  7. Lee, J.W., Huh, Y.C., Nam, Y.Y., Lee, G.H.,Kim, Y.S. and Lee, Y.B., 2007, "Measurment and Monitoring of Mechanical Loads of Wind Turbines Using Distributed Fiber Optic Sensor," Trans. of the Korean Soc. for Noise and Vib. Eng., Vol. 17, pp. 1028-1036. https://doi.org/10.5050/KSNVN.2007.17.11.1028
  8. Schroeder, K., Ecke, W., Apitz, J., Lembke, E.and Lenschow, G., 2006, "A Fibre Bragg Grating Sensor System Monitors Operational Load in a Wind Turbine Rotor Blade," Meas. Sci. Technol., Vol. 17, pp. 1167-1172. https://doi.org/10.1088/0957-0233/17/5/S39
  9. Cytronique Co. Ltd.
  10. PXI module, National Instruments.
  11. Kang, L.H., Kim, D.K. and Han, J.H., 2007, "Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors," Journal of Sound and Vibration, Vol. 35, pp. 534-542.
  12. Gere, J.M. and Goodno, B.J., 2009, Mechanics of Materials, 7th edition, Cengage Learning, Toronto, Canada, Chapter 5.
  13. Choi, E.S., Kang, D.H., Chung W.S. and Kim,H.S., 2006, "Estimation of Dynamic Displacement and Characteristics of a Simple Beam from Fbg Sensor Signals," Journal of Korean Society of Steel Construction, Vol. 18, pp. 503-514.