DOI QR코드

DOI QR Code

A poroelastic model for ultrasonic wave attenuation in partially frozen brines

부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델

  • Matsushima, Jun (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo) ;
  • Nibe, Takao (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo) ;
  • Suzuki, Makoto (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo) ;
  • Kato, Yoshibumi (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo) ;
  • Rokugawa, Shuichi (Department of Technology Management for Innovation, School of Engineering, The University of Tokyo)
  • Received : 2010.08.25
  • Accepted : 2010.11.30
  • Published : 2011.02.28

Abstract

Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

유체를 포함하는 혼합 매질에서의 탄성파 고유 감쇠에 대한 다양한 메커니즘 중, 탄성파 전파 시 고체와 유체 사이에서의 상대적 운동은 가장 중요한 감쇠 메커니즘 중의 하나이다. 선행 연구에서는 얼음의 미세 공극 안에 존재하는 소금물이 초음파의 전파에 미치는 영향을 분석하기 위하여 얼음과 소금물이 공존하는 매질에서 초음파 전파 실험하였다. 부분적으로 동결된 소금물에서 각기 다른 온도에서의 초음파 감쇠의 물리적인 메커니즘을 350 ~ 600 kHz의 주파수 대역에서 규명하기 위하여, Biot 이론에 입각한 다공성의 탄생 모델을 도입하여 초음파의 전파를 측정하였다. 고체상은 얼음으로, 액체상은 소금물로 가정한 뒤 펄스 핵자기공명기술로 측정한 유체의 성질을 이용하여 각각의 온도에서의 공극률을 계산한 결과, 실험으로 측정한 감쇠값은 500 kHz에서 계산된 고유 감쇠값과 다르게 나타났으며 이는 squirt -flow 메커니즘과 파의 산란 효과와 같은 다른 감쇠 메커니즘도 고려해야 한다는 것을 의미한다.

Keywords

References

  1. Berryman, J. G., 1980, Confirmation of Biot's Theory: Applied Physics Letters, 37, 382-384. doi:10.1063/1.91951
  2. Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-Frequency Range and II. High-Frequency range: The Journal of the Acoustical Society of America, 28, 168-191. doi:10.1121/ 1.1908239
  3. Burridge, R., and Keller, J. B., 1981, Poroelasticity equations derived from microstructure: The Journal of the Acoustical Society of America, 70, 1140-1146. doi:10.1121/1.386945
  4. Callaghan, P. T., Dykstra, R., Eccles, C. D., Haskell, T. G., and Seymour, J. D., 1999, A nuclear magnetic resonance study of Antarctic sea ice brine diffusivity: Cold Regions Science and Technology, 29, 153-171. doi:10.1016/S0165-232X(99)00024-5
  5. Carcione, J. M., and Seriani, G., 2001, Wave simulation in frozen porous media: Journal of Computational Physics, 170, 676-695. doi:10.1006/ jcph.2001.6756
  6. Carcione, J. M., Santos, J. E., Ravazzoli, C. L., and Helle, H. B., 2003, Wave simulation in partially frozen porous media with fractal freezing conditions: Journal of Applied Physics, 94, 7839-7847. doi:10.1063/ 1.1606861
  7. Carcione, J. M., Campanella, O. H., and Santos, J. E., 2007, A poroelastic model for wave propagation in partially frozen orange juice: Journal of Food Engineering, 80, 11-17. doi:10.1016/j.jfoodeng.2006.04.044
  8. Carman, P. C., 1937, Fluid flow through a granular bed: Transactions of the Institution of Chemical Engineers, 15, 150-166.
  9. Carr, H. Y., and Purcell, E. M., 1954, Effects of diffusion on free precession in nuclear magnetic resonance experiments: Physical Review, 94, 630-638. doi:10.1103/PhysRev.94.630
  10. De Gennes, P. G., 1976, On a relation between percolation theory and the elasticity of gels: Journal de Physique Lettres, 37, 1-2. doi:10.1051/ jphyslet:019760037010100
  11. Deptuck, D., Harrison, J. P., and Zawadzki, P., 1985, Measurement of elasticity and conductivity of a three-dimensional percolation system: Physical Review Letters, 54, 913-916. doi:10.1103/PhysRevLett.54.913
  12. Dvorkin, J., Mavko, G., and Nur, A., 1995, Squirt flowin fully saturated rocks: Geophysics, 60, 97-107. doi:10.1190/1.1443767
  13. Ecker, C., Dvorkin, J., and Nur, M. A., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data: Geophysics, 65, 565-573. doi:10.1190/1.1444752
  14. Gao, L., Poirier, J., and Aki, K., 1993, Attenuation due to partial melting: an experimental study on a model system, using the lab coda method: Journal of Geophysical Research, 98, 1853-1860. doi:10.1029/ 92JB02296
  15. Gassmann, F., 1951, Uber der Elastizitat poroser Medien: Vieteljahrsschrift der Naturforschenden. Gesellschaft in Zurich, 96, 1-23.
  16. Guerin, G., and Goldberg, D., 2002, Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L–38 research well, Mackenzie Delta, Canada: Journal of Geophysical Research, 107, 2088. doi:10.1029/2001JB000556
  17. Guerin, G., and Goldberg, D., 2005, Modeling of acoustic wave dissipation in gas hydrate - bearing sediments: Geochemistry Geophysics Geosystems, 6, Q07010. doi:10.1029/2005GC000918
  18. Hackert, C. L., and Parra, J. O., 2003, Estimating scattering attenuation from vugs or karsts: Geophysics, 68, 1182-1188. doi:10.1190/1.1598111
  19. Helgerud, M., Dvorkin, J., Nur, A., Sakai, A., and Collett, T., 1999, Elasticwave velocity in marine sediments with gas hydrates: effective medium modelling: Geophysical Research Letters, 26, 2021-2024. doi:10.1029/ 1999GL900421
  20. Johnson, D. L., Koplik, J., and Dashen, R., 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media: Journal of Fluid Mechanics, 176, 379-402. doi:10.1017/S0022112087000727
  21. Johnston, D. H., Toksöz, M. N., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms: Geophysics, 44, 691-711. doi:10.1190/1.1440970
  22. Korenaga, J., Holbrook,W.S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the Southeast U.S. margin: Constraints from fullwaveform and travel time inversion of wide-angle seismic data: Journal of Geophysical Research, 102, 15345-15365. doi:10.1029/ 97JB00725
  23. Kozeny, J., 1927, Über kapillare Leitung des Wassers im Boden – Aufstieg, Versickerung und Anwendung auf die Bewässerung, Sitzungsberichte der Akademie der Wissenschaften Wien: Mathematisch Naturwissenschaftliche Abteilung, 136, 271-306.
  24. Klimentos, T., and McCann, C., 1990, Relationships between compressional wave attenuation, porosity, clay content, and permeability of sandstone: Geophysics, 55, 998-1014. doi:10.1190/1.1442928
  25. Leclaire, P., Cohen-Tenoudji, F., and Aguirre-Puente, J., 1994, Extension of Biot's theory of wave propagation to frozen porous media: The Journal of the Acoustical Society of America, 96, 3753-3768. doi:10.1121/1.411336
  26. Lee, M. W., 2006, Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium? Scientific Investigations Report 2006-5120, 13 pp., U.S. Geological Survey, Reston, Virginia.
  27. Lee, S., Cornillon, P., and Kim, Y., 2002, Spatial investigation of the nonfrozen water distribution in frozen foods using NMR SPRITE: Journal of Food Science, 67, 2251-2255. doi:10.1111/j.1365-2621. 2002.tb09536.x
  28. Lee, S., Pyrak-Nolte, L. J., Cornillon, P., and Campanella, O., 2004, Characterization of frozen orange juice by ultrasound and wavelet analysis: Journal of the Science of Food and Agriculture, 84, 405-410. doi:10.1002/jsfa.1558
  29. Matsushima, J., 2005,, Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well off Tokai, central Japan: Geophysical Research Letters, 32, L03306. (Correction): Geophysical Research Letters, 33, L02305. doi:10.1029/ 2005GL024466
  30. Matsushima, J., 2006, Seismic wave attenuation in methane hydrate-bearing sediments: Vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan: Journal of Geophysical Research, 111, B10101. doi:10.1029/2005JB004031
  31. Matsushima, J., Suzuki, M., Kato, Y., Nibe, T., and Rokugawa, S., 2008, Laboratory experiments on compressional ultrasonic wave attenuation in partially frozen brines: Geophysics, 73, N9–N18. https://doi.org/10.1190/1.2827214
  32. Meiboom, S., and Gill, D., 1958, Modified spin-echo method for measuring nuclear relaxation times: The Review of Scientific Instruments, 29, 688-691. doi:10.1063/1.1716296
  33. Pham, N. H., Carcione, J. M., Helle, H. B., and Ursin, B., 2002, Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation: Geophysical Prospecting, 50, 615–627. doi:10.1046/j.1365-2478.2002.00343.x
  34. Plona, T. J., 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies: Applied Physics Letters, 36, 259-261. doi:10.1063/1.91445
  35. Prasad, M., and Dvorkin, J., 2004, Velocity and attenuation of compressional waves in brines: 74th Annual International Meeting, SEG, Expanded Abstracts, 23, 1666-1669.
  36. Pratt, R., Bauer, K., and Weber, M., 2003, Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates: 73rd SEG Annual Meeting, Extended Abstracts, 22, 2255-2258.
  37. Priest, J. A., Best, A. I., and Clayton, C. R. I., 2006, Attenuation of seismic waves in methane gas hydrate-bearing sand: Geophysical Journal International, 164, 149-159. doi:10.1111/j.1365-246X.2005.02831.x
  38. Sams, M., and Goldberg, D., 1990, The validity of Qestimates from borehole data using spectral ratios: Geophysics, 55, 97-101. doi:10.1190/ 1.1442776
  39. Spetzler, H., and Anderson, D. L., 1968, The effect of temperature and partial melting on velocity and attenuation in a simple binary system: Journal of Geophysical Research, 73, 6051-6060. doi:10.1029/JB073i018p06051
  40. Sloan, E. D., 1990, Clathrate Hydrates of Natural Gases: Marcel Dekker.
  41. Stoll, R. D., 1977, Acoustic waves in ocean sediments: Geophysics, 42, 715-725. doi:10.1190/1.1440741
  42. Suzuki, M., Matsushima, J., Kato, Y., Nibe, T., and Rokugawa, S., 2010, Ultrasonic wave-transmission measurement system on an ice-brine coexisting system: Butsuri Tansa, 63, 239-249. [in Japanese with English abstract]
  43. Tada, R., 1999, Experimental study of the elastic wave propagation in the granular composite material: Butsuri Tansa, 52, 28-42. [in Japanese with English abstract]
  44. Tada, R., and Kimura, M., 1999, Experimental study of the elastic wave propagation in composite porous media with glass beads and ice constituents – comparison with numerical study: Butsuri Tansa, 52, 323-335. [in Japanese with English abstract]
  45. Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research, 71, 2591-2599. https://doi.org/10.1029/JZ071i010p02591
  46. Walsh, J. B., 1969, New analysis of attenuation in partially melted rock: Journal of Geophysical Research, 74, 4333-4337. doi:10.1029/ JB074i017p04333
  47. Winkler, K. W., and Nur, A., 1982, Seismic attenuation: Effects of pore fluids and frictional sliding: Geophysics, 47, 1-15. doi:10.1190/1.1441276
  48. Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: Journal of Geophysical Research, 99, 9681-9695. doi:10.1029/ 94JB00238
  49. Yang, D., and Zhang, Z., 2002, Poroelastic wave equation including the Biot/ squirt mechanism and the solid/fluid coupling anisotropy: Wave Motion, 35, 223-245. doi:10.1016/S0165-2125(01)00106-8