DOI QR코드

DOI QR Code

Study on Formation of FePd Nano-dot Using Agglomeration of Fe/Au Bilayer

Fe/Au 이중층의 응집현상을 이용한 FePd 나노 점 형성에 관한 연구

  • Koo, J.K. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, J.M. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Ryua, D.H. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Choi, B.J. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, D.W. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, D.H. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, U.I. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Mitani, S. (Magnetic Materials Center, National Institute for Materials Science) ;
  • J.G., M. Kamiko (Institute of Industrial Science, The University of Tokyo) ;
  • Ha, J.G. (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2010.10.21
  • Accepted : 2010.12.08
  • Published : 2011.01.30

Abstract

[ $L1_0$ ]phase FePd nano-dot structures were successfully fabricated on self-organized Fe/Au bilayers. With atomic force microscopy, it is determined that surface morphologies of initially flat Fe/Au bilayer films were agglomerated and transformed their shape into nano-dots structures with increasing annealing temperature. With this bilayer as a template, FePd multilayers were deposited at various temperatures, i.e. $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, and $450^{\circ}C$. Surface morphologies of FePd superlattice had a near resemblance to self-organized bilayer. According to X-ray diffraction results, it is confirmed that $L1_0$ superlattice structures of FePd were obtained from samples which were annealed above $350^{\circ}C$. Results of X-ray photoelectron spectroscopy depth-profile analysis showed that chemical composition is identical to deposition sequence. As a result, without additional etching processes, fabrication of chemically ordered FePd superlattice nano-dots was achieved.

자기조립화된 Fe/Au 이중층 위에 $L1_0$형 구조를 갖는 FePd 나노 점을 성공적으로 제작하였다. AFM를 이용하여 초기에 편평한 Fe/Au 이중층 박막이 온도가 증가함에 따라서 응집되어 나노 점 구조로 변형되는 것을 확인하였다. 또한 형성된 이중층위에 FePd 다층막을 $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, $450^{\circ}C$에서 각각 증착하였다. 초격자 구조를 갖는 FePd 다층막의 표면형상은 응집현상에 의하여 자기조립화된 이중층의 형상과 유사하였다. XRD 측정결과, $350^{\circ}C$ 이상에서 열처리된 FePd 다층막은 $L1_0$형 구조를 갖는다는 것을 확인하였다. 그리고 박막두께에 따른 XPS 측정결과는 전체 박막의 화학적 조성이 증착순서와 일치하는 것을 보여주었다. 결과적으로 추가적인 식각공정 없이 화학적으로 규칙화된 FePd 초격자 나노 점의 제작에 성공하였다.

Keywords

References

  1. G. Schmid, Chem. Rev. 92, 1709 (1992). https://doi.org/10.1021/cr00016a002
  2. W. Zhang, J. Nanopart. Res. 5, 323 (2003). https://doi.org/10.1023/A:1025520116015
  3. W. Fritzsche and T. A. Taton, Nanotechnology 14, R63 (2003). https://doi.org/10.1088/0957-4484/14/12/R01
  4. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000). https://doi.org/10.1126/science.287.5460.1989
  5. H. -M. So, J. Kim, W.S. Yun, J. W. Park, J. -J. Kim, D. -J. Won, Y. Kang, and C. Lee, Phys E. 18, 243 (2003). https://doi.org/10.1016/S1386-9477(02)00996-7
  6. Z. Wang and G. Chumanov, Adv. Mater. 15, 1285 (2003). https://doi.org/10.1002/adma.200304989
  7. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, Nano Lett. 5, 1065 (2005). https://doi.org/10.1021/nl0505492
  8. J. Lian, L. Wang, X. Sun, Q. Yu, and R. C. Ewing, Nano Lett. 6, 1047 (2006). https://doi.org/10.1021/nl060492z
  9. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285, 1551 (1999). https://doi.org/10.1126/science.285.5433.1551
  10. C. Favazza, R. Kalyanaraman, and R. Sureshkumar, Nanotechnology 17, 4229 (2006). https://doi.org/10.1088/0957-4484/17/16/038
  11. L. Huang, S. J. Chey, and J. H. Weaver, Phys. Rev. Lett. 80, 4095 (1998). https://doi.org/10.1103/PhysRevLett.80.4095
  12. G. D. Waddill, I. M. Vitomirov, C. M. Aldao, and J. H. Weaver, Phys. Rev. Lett. 62, 1568 (1989). https://doi.org/10.1103/PhysRevLett.62.1568
  13. J. H. Weaver and G. D. Waddill, Science 251, 1444 (1991). https://doi.org/10.1126/science.251.5000.1444
  14. K. Jordan and I. V. Shvets, Appl. Phys. Lett. 88, 193111 (2006). https://doi.org/10.1063/1.2201861
  15. P.R. Gadkai, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, J. Vac. Sci. Technol. A23, 1152 (2005)
  16. E. Shaffir, I. Riess, W. D. Kaplan, Acta Mater. 57, 248 (2009) https://doi.org/10.1016/j.actamat.2008.09.004
  17. J. -U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, J. Appl. Phys. 84, 5686 (1998). https://doi.org/10.1063/1.368831

Cited by

  1. Study on Effect of Various Underlayer on Bilayer Agglomerlation vol.21, pp.5, 2012, https://doi.org/10.5757/JKVS.2012.21.5.233