DOI QR코드

DOI QR Code

Characteristics of Plasma Plume with a Cylindrical Syringe Plasma Jet Device

원통형 바늘 구조의 플라즈마 제트 방출 특성

  • Lim, H.K. (Department of Electrophysics /LCD-BLU Laboratory, Kwangwoon University) ;
  • Jin, D.J. (Department of Electrophysics /LCD-BLU Laboratory, Kwangwoon University) ;
  • Kim, J.H. (Department of Electrophysics /LCD-BLU Laboratory, Kwangwoon University) ;
  • Han, S.H. (Department of Electrophysics /LCD-BLU Laboratory, Kwangwoon University) ;
  • Cho, G.S. (Department of Electrophysics /LCD-BLU Laboratory, Kwangwoon University)
  • 임현교 (광운대학교 전자물리학과) ;
  • 김동준 (광운대학교 전자물리학과) ;
  • 김정현 (광운대학교 전자물리학과) ;
  • 한상호 (광운대학교 전자물리학과) ;
  • 조광섭 (광운대학교 전자물리학과)
  • Received : 2010.12.09
  • Accepted : 2011.01.20
  • Published : 2011.01.30

Abstract

The plasma emission characteristics are investigated in cylindrical syringe plasma jet device. Cylindrical syringe electrode is applied AC power using inverter. In the center of syringe is injected into a inert gas and plasma jet occurs. If there is no ground electrode, firing voltage is 3 kV and plasma column length is 10 mm. According to high firing voltage and large current, the plasma column length control is difficult. The case of an internal ground electrode, firing voltage is 1 kV. Because of the losing current from internal ground, even if a higher input voltage, plasma emission does not occur. The case of an external ground electrode, the plasma column can be controlled between 0~10 mm with change the applied voltage from 1 to 2 kV, and the discharging current changed from 1 to 4 mA.

유리관에 삽입된 주사기 바늘을 이용한 플라즈마 제트 장치의 특성을 조사하였다. 원통형 주사기 바늘 전극에 교류 고전압을 인가하고, 유리관 끝에 설치된 접지전극의 형태에 따른 플라즈마의 방출 특성을 조사하였다. 접지전극이 없는 경우 방전 개시 전압이 약 3 kV이며, 플라즈마 방사 길이는 약 10 mm이다. 또한 높은 방전 개시 전압으로 인하여 플라즈마 방사 길이 및 전류 최소량의 제어가 어렵다. 내부접지 전극의 경우는 방전 개시 전압이 약 1 kV로 낮다. 그러나 플라즈마 전류가 내부에 위치한 접지 전극으로 흐르기 때문에 유리관 끝으로부터 플라즈마가 방출되지 않는다. 외부접지 전극의 경우는 인가전압 1~2 kV에서, 방전 전류 1~4 mA이며 플라즈마 방사 길이를 0~10 mm의 범위에서 용이하게 제어된다.

Keywords

References

  1. H. S. Uhm, J. Korean Vacuum Soc. 15, 117 (2006).
  2. G. S. Nam, J. Korean Soc. for Heat Treatment 16, 232 (2003).
  3. A. Fidman, A. Chirokov, and A. Gutsol, J. Phys. D: Appl. Phys. 38, R1 (2005). https://doi.org/10.1088/0022-3727/38/2/R01
  4. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochimica Acta Part B 61, 2 (2006). https://doi.org/10.1016/j.sab.2005.10.003
  5. V. N. Vasilet, A. Gutsol, A. B. Shekhter, and A. Fridman, High Energy Chemistry 43, 229 (2009). https://doi.org/10.1134/S0018143909030126
  6. V. N. Vasilet, A. Gutsol, A. B. Shekhter, and A. Fridman, High Energy Chemistry 43, 229 (2009). https://doi.org/10.1134/S0018143909030126
  7. D. Dobrynin, G. Fridman, G. Friedman, and A. Fredman, New Journal of Physics 11, 115020 (2009). https://doi.org/10.1088/1367-2630/11/11/115020
  8. X. Lu, Y. Cao, P. Yang, Q. Xiong, Z. Xiong, Y. Xian, and Y. Pan, IEEE Transactions on Plasma Science 37, 668 (2009). https://doi.org/10.1109/TPS.2009.2015454
  9. R. E. J. Sladek and E. Stoffels, J. Phys. D: Appl. Phys. 38, 1716 (2005). https://doi.org/10.1088/0022-3727/38/11/012
  10. H. W. Lee, S. H. Nam, A. H. Mohamed, G. C. Kim, and J. K. Lee, Plasma Processs. Polym. 7, 274 (2010). https://doi.org/10.1002/ppap.200900083
  11. M. Laroussi, C. Tendero, X. Lu, S. Alla, and W. L. Hynes, Plasma Process. Ploym. 3, 470 (2006). https://doi.org/10.1002/ppap.200600005
  12. X. Lu, Z. Xiong, F. Zhao, Y. Xian, Q. Xiong, W. Gong, C. Zou, Z. Jiang, and Y. Pan, Applied Physics Letters 95, 181501 (2009). https://doi.org/10.1063/1.3258071
  13. T. Nosenko, T. Shimizu, and G. E. Morfill, New Journal of Physics 11, 115013 (2009). https://doi.org/10.1088/1367-2630/11/11/115013
  14. G. Daeschlein, T. Woedtke, E. Kindel, R. Brandenburg, K. D. Weltmann, and M. Junger, Plasma Process. Ploym. 7, 224 (2010). https://doi.org/10.1002/ppap.200900059
  15. M. Laroussi, IEEE Transactions on Plasma Science 30, 1409 (2002). https://doi.org/10.1109/TPS.2002.804220
  16. A. Chirokov, A. Gutsol, and A. Fridman, Pure Appl. Chem. 77, 487 (2005). https://doi.org/10.1351/pac200577020487
  17. G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, and G. Friedman, Plasma Chem Plasma Process, 26, 425 (2006). https://doi.org/10.1007/s11090-006-9024-4
  18. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Process. Ploym. 5, 503 (2008). https://doi.org/10.1002/ppap.200700154
  19. H. W. Herrmann, I. Henins, J. Park, and G. S. Selwyn, Physics of Plasmas 6, 2284 (1999). https://doi.org/10.1063/1.873480
  20. T. Nakamura, O. Saito, T. Ko, and T. Maruyama, Journal of Oral Rehabilitation 28, 1080 (2001). https://doi.org/10.1046/j.1365-2842.2001.00762.x
  21. S. Wang, V. Schulz-von der Gathen, and H. F. Dobele, Applied Physics Letters 83, 8272 (2003).
  22. C. Cheng, P. Liu, L. Xu, L. Y. Zhang, and R. J. Zhan, Chin. Phys. Soc. 15, 1544 (2006). https://doi.org/10.1088/1009-1963/15/7/028
  23. D. H. Kim, C. H. Kim, Y. B. Yoon, D. H. Lee, W. G. Lee, and J. H. Jeong, Electrical safety engineering (Sin Kwang Munhwasa, Paju, 2008), pp. 23-48.
  24. J. H. U. Brown and J. F. Dickson III, Advances in Biomedical Engineering (Academic Press Inc., Missouri, 1973), pp. 223-248.
  25. G. S. Cho, D. H. Lee, J. Y. Lee, H. S. Song, D. H. Gill, J. H. Koo, E. H. Choi, S. B. Kim, B. S. Kim, J. G. Kang, M. R. Cho, M. G. Hwang, Y. Y. Kim, M. M. Kim, J. S. Kim, U. W. Lee, and S. C. Yang, J. Korean Vacuum Soc. 14, 48 (2005).

Cited by

  1. Characteristics of Plasma Discharge according to the Gas-flow Rate in the Atmospheric Plasma Jets vol.22, pp.3, 2013, https://doi.org/10.5757/JKVS.2013.22.3.111
  2. Plasma Apparatuses for Biomedical Applications vol.43, pp.4, 2015, https://doi.org/10.1109/TPS.2015.2388775
  3. Plasma Potential of Atmospheric Plasma Double Jets vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.312
  4. Influence of an external electrode on a plasma plume ejected from a syringe electrode inside a glass tube vol.61, pp.4, 2012, https://doi.org/10.3938/jkps.61.557
  5. Discharge Characteristics of Plasma Jet Doping Device with the Atmospheric and Ambient Gas Pressure vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.301
  6. Electrical potential measurement in plasma columns of atmospheric plasma jets vol.112, pp.10, 2012, https://doi.org/10.1063/1.4766756