• Title/Summary/Keyword: 응집현상

Search Result 388, Processing Time 0.035 seconds

A Study on the Size and Concentration of Cohesive Sediment (점착성 유사의 크기와 농도에 관한 고찰)

  • Son, Minwoo;Park, Byeoung Eun;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.286-286
    • /
    • 2018
  • 하천에서 점착성 유사의 부유사는 입자 표면의 전자기적, 생화학적 점착력과 충돌에 의해 플럭(Floc)을 형성하고 응집된 플럭은 하천의 흐름 및 난류에 의해 파괴되기도 한다. 이 과정을 응집현상이라고 한다. 하천의 점착성 유사는 보통 플럭의 형태를 띠며 응집현상으로 인해 플럭의 밀도와 크기는 지속적으로 변화한다. 일반적으로 변화하는 플럭의 크기는 높은 질량 농도에서 증가한다고 알려져 있다(McAnally and Mehta, 2000; Maggi et al., 2007). 하지만 현장 연구에서 실측된 자료들은 종종 플럭의 크기와 농도가 반비례 관계를 가지는 경향을 보여준다(Gartner et al., 2001; Fettweis et al., 2006; Todd, 2014). 이에 따라 본 연구는 현장의 실측 자료가 일반적인 연구와 다르게 플럭의 크기와 농도가 반비례 관계를 가지는 현상을 규명하기 위해 점착성 유사의 이동을 모의하는 1차원 연직 수치 모형으로 수치 실험을 실시하고 그 결과를 분석한다. 수치 실험은 현장연구와 조건이 비슷한 이상적인 조류조건과 정류상태의 한 방향 흐름(Current Flow)을 함께 발생시키고 점착성 유사의 특징인 응집현상을 고려하였다. 모의 결과, 실측 자료와 같이 총 모의 수심 중 하상과 가까운 측정 수심에서는 플럭의 크기와 농도가 반비례 관계를 가지는 경향을 보였다. 그러나 측정 수심이 수표면 쪽으로 갈수록 플럭 크기와 농도가 비례하는 현상을 보였다. 이와 같이 서로 다른 두 가지 결과를 분석하기 위해 플럭의 크기를 결정하는 대표적인 매개변수인 농도와 난류의 강도를 나타내는 난류소산매개변수(Turbulent shear, G)를 가지고 새로운 매개변수를 만들었다. 플럭의 크기를 결정하는 방정식에서 농도는 응집의 과정에 G는 응집과 파괴의 과정에 관여한다고 알려져 있다. 새로운 매개변수로 총 모의 수심에 걸쳐 분석한 결과 하상에서 수표면 쪽으로 갈 때 난류와 농도 모두 줄어들지만 파괴와 응집의 우세를 나타내는 매개변수가 도치되는 현상을 보였다. 즉 하상부근의 강한 난류와 높은 농도가 응집현상을 만들지만 농도는 응집현상에, 난류는 응집과 파괴 모두 관여하므로 상대적으로 농도와 난류가 만들어내는 응집보다 난류가 만드는 파괴가 강할 때 플럭의 크기가 줄어드는 것으로 예측된다. 이에 따라 점착성 유사의 플럭 크기를 예측할 때에는 플럭의 크기가 농도와 선형의 관계를 가지는 것이 아닌 농도와 난류가 함께 작용하는 비선형 관계임을 고려해야 한다.

  • PDF

Adhesion and Agglomeration Phenomena of Pt Film of Resistance Heat Source (저항열원체 Pt 박막의 밀착력과 응집화 현상)

  • Lee, Jae-Seok;Park, Hyo-Deok;Sin, Sang-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.204-209
    • /
    • 1996
  • 각종 전자부품에 이용되는 백금막의 밀착력과 응집화 현상에 대해 연구하였다. 온도저항계수(TCR)의 열화 없이 밀착력을 향상 시키기 위해서 AI, Si의 산화물을 adhesion promoting layer로 이용한 결과 매우 우수한 밀착력과 TCR을 보였다. 질소분위기 600-90$0^{\circ}C$의 온도범위에서 행한 열처리를 통해 응집화현상을 관찰한 결과 응집화는 기판거칠기에 따라 다른 양상을 보였다. Si3N4등의 기판거칠기가 작은 adhesion promoting layer를 이용한 시편의 경우 고온인 90$0^{\circ}C$에서 응집화 현상이 발생되었다. 표면거칠기가 큰 AI-Si 산화물을 adhesion promoting layer로 이용한 시편의 경우 비교적 저온인 $600^{\circ}C$에서 응집화 현상이 발생했으며 80$0^{\circ}C$이상의 열처리의 경우 중앙응집체와 응집체고갈지역이 형성되는 현상을 나타내었다.

  • PDF

A Study on the Relationship between Concentration and Settling Velocity of Cohesive Sediment (점착성 유사의 침강 속도와 농도의 관계에 대한 고찰)

  • Son, Minwoo;Byun, Jisun;Park, Byeoungeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.87-87
    • /
    • 2019
  • 흔히 진흙으로 대표되는 점착성 유사는 모래와 같은 비점착성 유사와 달리 응집 현상으로 인해 지속적으로 유사 입자의 크기가 변화한다. 응집 현상은 점착성 유사 입자의 응집 과정과 파괴과정으로 구성된다. 응집 현상 중 응집 과정은 유사 입자 간의 충돌로 인해 발생하는 것으로 이해되며, 충돌을 야기하는 메커니즘으로는 브라운 운동(Brownian Motion), 차등침강(Differential Settling), 난류 전단 (Turbulent Flow Shear)이 있다. 파괴 과정은 입자간 충돌로 인해 깨지는 것이 아닌 난류 전단(Turbulent Shear)로 인한 덩어리 분리(Massive Splitting)가 발생하는 것으로 이해한다. 이러한 유체의 특성, 흐름 특성 (난류 거동) 뿐만 아니라 유사 입자의 특성 모두의 영향을 받으며 지속적인 응집 현상을 겪는 점착성 유사 입자들은 하나의 커다란 덩어리인 플럭(Floc)을 형성한다. 형성된 플럭의 구조는 프랙탈 기하학을 따르는 것으로 이해된다. 따라서 플럭의 구조는 자기 유사성을 띠며, 플럭의 밀도는 형성된 플럭 크기의 함수가 된다. 플럭의 크기가 증가할수록 플럭의 프랙탈 차원이 감소하며, 플럭의 밀도는 감소한다. 많은 이전의 연구에서 플럭의 침강 속도를 농도에 따른 함수로 가정하고 경험식을 이용하여 산정하나, 유사 입자의 침강 속도는 크기와 밀도의 함수임을 Stokes Law를 통해 생각해 볼 수 있다. 이에 본 연구에서는 응집 현상의 결과물로 형성된 응집물의 크기와 밀도를 각각 산정하고, Stokes Law를 이용하여 침강 속도와 응집물 크기의 관계에 대한 연구를 수행하고자 한다. 보다 심도 있는 연구를 위해서는 응집 현상을 야기하는 메커니즘에 대한 이해가 필수적이다. 간소화된 응집 모형으로부터 얻어진 플럭 크기를 이용하여 프랙탈 차원, 플럭의 밀도를 산정한다. 형성된 응집물의 크기와 침강 속도의 관계에 대한 이해를 통해 보다 정확한 플럭의 침강 속도 산정이 가능할 것으로 생각된다.

  • PDF

Flocculation behavior of PCC filler induced by cationic polymer (양이온성 고분자 첨가에 의한 경질탄산칼슘의 응집 현상)

  • Seo, Dong-Il;Lee, Hak-Rae
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.193-193
    • /
    • 2010
  • 이전의 연구에서 우리는 선응집 기술을 적용한 중질탄산칼슘의 크기에 따른 수초지의 물성을 평가하였다. 이때 선응집 기술이 적용된 충전물의 입도와 분포를 측정하기 위해 light diffraction spectroscopy (LDS) 가 사용되었다. 경질탄산칼슘과 양이온성 고분자의 흡착 현상을 알아보기 위한 이번 연구에도 LDS가 사용되었으며, 일회성으로 입자의 크기와 분포를 측정하는 것에서 더 나아가 시간의 흐름에 따라 응집체의 형성과 파괴, 재성장을 관찰할 수 있는 도구로서 역할 하였다. 본 연구에서 우리는 세 가지 경우로 나누어 경질탄산칼슘의 응집 현상을 관찰하였다. 첫째로 경질탄산칼슘에 흡착되는 양이온성 고분자의 특성, 분자량과 전하밀도, 을 달리하여 응집체의 성장과 파괴를 관찰하였다. 둘째, 양이온성 고분자로 중질탄산칼슘을 응집시켜, 경질탄산칼슘 응집체의 경우와 입도와 전단 안정성 등을 비교하였다. 마지막으로 나노 크기의 실리카 투입이, 마이크로 크기의 경질탄산칼슘 응집체가 강한 전단에 의해 파괴되었을 때, 응집체의 전단 안정성이나 재성장 측면에 도움을 주는지 관찰하였다. 내첨용 충전물로써 경질탄산칼슘의 사용이 전 세계적으로 늘고 있는 시점에서 양이온성 고분자 첨가에 의한 경질탄산칼슘의 응집 현상을 관찰하는 것은 일반적인 제지 공정에서 경질탄산칼슘의 거동을 이해하는데 도움이 될 뿐만 아니라, 내첨용 충전물 첨가에 따른 종이의 강도 저하 방지를 위한 선응집 기술의 적용에도 도움이 될 수 있을 것으로 생각한다.

  • PDF

Floc Behaviors Due to Flocculation Process (응집현상에 의한 플럭의 거동 변화)

  • Son, Minwoo;Park, Byeoung Eun;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.253-253
    • /
    • 2019
  • 유사의 이동은 하천, 해안 지역과 같은 수계에서 하상의 변동, 침식과 퇴적을 일으켜 지형적인 변화를 초래한다. 유사의 이동은 유사의 특성과 유체의 유수동역학적 특성에 의해 결정되며 유체특성 간의 복잡한 상호 작용에 의해 변화한다. 유사가 가지는 점착성은 유사의 특성에 큰 영향을 끼친다. 입자의 크기가 매우 작은 점착성 유사는 그 표면이 가지는 전자기적 점착력에 의해 주위의 1차 입자나 다른 작은 알갱이들이 서로 뭉치는 응집과 충돌에 의해 크기가 작아지는 파괴의 과정을 겪는다. 이 과정을 응집현상이라고 하며 응집현상을 통해 점착성 유사의 크기와 밀도, 침강속도는 계속해서 변화한다. 따라서 점착성 유사의 응집거동 고려한 유사 이동 연구는 필수적이다. 과거 연구의 많은 사례에서 유사의 크기와 농도는 비례 관계를 가지는 것이 일반적이라 알려져 있다. 그러나 실제 현장에서 측정한 결과 유사의 크기와 농도가 반비례 관계를 가지는 특이점이 발견되었다. 실측 연구에서 발견된 응집거동에 따른 유사의 특성의 특이한 변화를 설명하기 위해 1차원 연직 수치 모형(1DV)을 이용하여 수치 실험을 수행하였다. 모의 수행 시, 흐름 조건을 크기와 방향이 일정한 순방향흐름(Current)에 특정 주기와 진폭을 가지는 진동 흐름(Oscillatory Flow)을 추가하여 진행하였다. 플럭의 성장과 그에 따른 입자의 크기는 많은 현상에 영향을 받는다. 그 중 응집현상의 응집 과정과 파괴 과정 중 어떤 현상이 더 우세한지 그 경쟁관계를 파악하여 플럭의 크기의 증감을 예측할 수 있게 농도(?)와 난류소산매개변수(?)를 이용하여 $c/G^{0.5}$로 매개화하였다. 실험 결과, 순방향 흐름을 제외하고 스토크스파 흐름 조건을 이용하여 진행된 모의에서는 플럭의 크기와 농도가 반비례하는 현상을 관찰할 수 없었으며 $c/G^{0.5}$ 의 변화 역시 흐름의 속도와 농도가 더 큰 지점에서 큰 값을 가지는 일반적인 결과를 나타내었다. 그러나 같은 조건에서 순방향흐름을 추가하여 모의한 결과에서는 플럭의 크기와 농도가 반비례하는 현상을 나타냈다. 연직 방향 $c/G^{0.5}$의 변화를 나타낸 그래프에서 응집과 파괴의 우세에 따라 $c/G^{0.5}$ 가 역전되는 현상을 확인하였다. 즉, 플럭의 크기는 난류의 구조와 그 영향에 의해 농도와 비례관계를 갖지 않을 수도 있다고 판단된다. 또한 본 연구에서 정상류 흐름 조건의 유무에 따라 플럭의 크기와 농도가 비례하거나 반비례하는 상반된 결과를 보였다. 정상류 흐름 조건이 난류의 강도에 큰 역할을 하며 이에 따라 비선형 관계에 영향을 끼친다는 것을 발견하였다. 그러나 흐름의 영향에 대한 더 자세한 분석은 본 연구에서 진행되지 않았으며 향후 연구 시에 분명히 고려되어야 할 사항이다.

  • PDF

Computer simulation of agglomeration in colloidal alumina powder suspension (콜로이드성 알루미나 분말 입자의 응집현상의 컴퓨터 시뮬레이션)

  • 김종철;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.224-230
    • /
    • 1999
  • Agglomeration of colloidal alumina particles in a suspension is simulated. Particles in a suspension have potential energies between them and move to decrease the summation of all the potential energies between particles. The effects of various types of potential curves on particle agglomeration were checked. Strong short range attractive energy without repulsive energy barrier makes small strong clusters with disordered network structure but weak short-range force with big repulsive energy barrier makes big agglomerates with a close packing structure. As particles are agglomerated the potential energy with strong repulsive energy barrier between agglomerates gradually decreases the importance of the repulsive energy barrier and induces a different type of agglomeration behavior.

  • PDF

The Relationship Analysis between Concentration and Settling Velocity of Suspended Cohesive Sediment (점착성 유사의 농도와 침강속도가 나타내는 관계 분석)

  • Son, Minwoo;Park, Byeoung Eun;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.285-285
    • /
    • 2018
  • 하천에서 부유사의 형태로 이송되는 점착성 유사는 입자 표면의 전자기적 점착력의 영향과 하천의 흐름 및 난류에 의하여 지속적인 응집과 파괴의 과정인 응집현상을 겪는다. 이러한 응집현상을 통해 플럭을 형성한 점착성 유사의 크기 및 밀도는 끊임없이 변화하며 침강속도 역시 변화한다. 점착성 유사의 이동을 예측하기 위해서는 유사의 부유에 직접적으로 관계하는 침강속도를 이해하는 것이 중요하며 많은 연구에서 점착성 유사의 농도와 침강속도의 관계를 그래프로 보여주고 있다. 일반적으로 그래프에서 침강속도는 처음에 농도가 증가할수록 증가하는 비례 관계를 보여주다가 농도가 어느 정도를 넘어 더 증가하게 되면 감소하여 반비례하는 모양을 그리고 있다. 또한 연구들은 농도와 침강속도 두 관계가 분명한 멱함수법칙(Power Law)을 가진다고 언급하고 있다. 그러나 이전의 연구에서는 그래프가 보여주는 두 관계의 분석이나 메커니즘에 대해 중점을 두고 논의된 바가 없다. 본 연구는 점착성 유사의 응집현상과 이동을 모의하는 1차원 연직 수치모형으로 수치 실험을 실시하고, 그 결과를 바탕으로 농도와 침강속도가 갖는 관계를 면밀히 분석한다. 플럭의 크기 및 농도는 유사의 부유를 결정하는 침강속도와 매우 밀접한 관련이 있는 특징이며 특히 플럭의 크기는 침강속도를 결정한다. 즉 플럭의 크기와 농도가 갖는 관계가 침강속도와 농도가 갖는 관계에 크게 관여할 것으로 예측된다. 앞서 언급한 연구들의 그래프에서 비례 관계를 갖는 구간은 일반적으로 수면과 가까우며 농도와 크기가 비례하는 경향을 보이며 반비례하는 구간은 농도가 크고 난류가 강한 하상부근으로 두 관계가 반비례하는 경향이 밝혀진 연구가 있다. 점착성 유사의 농도 및 플럭의 크기가 이러한 경향을 띠는 것은 하상부근에서는 난류 전단과 그에 따른 플럭의 파괴와 응집의 결과로 나타나는 응집현상과 관련이 있으며 이러한 결과들을 바탕으로 점착성 유사의 침강속도와 농도가 가지는 관계를 분석한다.

  • PDF

Applicability of stochastic flocculation model and its capability when incorporated into sediment transport model (추계학적 응집모형의 적용성 및 유사이동 모형과의 결합가능성)

  • Son, Minwoo;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.368-368
    • /
    • 2016
  • 점착성 유사는 응집현상을 통해 크기와 밀도를 바꾸고 이에 따라 부유 및 이동에 큰 영향을 미치는 침강속도가 지속적으로 변화한다. 따라서 점착성 유사의 거동을 이해하기 위해서는 응집현상에 대한 고려가 필수적으로 이루어져야 한다. 현재까지 이루어진 응집현상 모형은 크게 Population balance equation type 모형(PBE)과 Floc growth type 모형(FGM)으로 나뉜다. PBE 모형은 점착성 유사의 입도분포를 모의할 수 있는 장점이 있는 반면에 닫힌 계에서 질량보존을 만족시키지 못하는 단점을 가진다. FGM 모형은 간단한 식을 통해 질량보존을 만족시키고 수치적으로 효율적인 모의를 할 수 있는 반면 입도분포를 모의할 수 없는 단점을 가진다. 이러한 장단점으로 인해 PBE 모형은 유사이동모형과 결합되어 이용된 사례가 없으며 FGM 모형은 유사이동모형과 결합되어 평균적인 점착성 유사의 거동만을 모의하는 연구에 이용되었다. 본 연구에서는 Stochastic floc growth type 모형(SFGM)의 개발에 따라 이해할 수 있는 점착성 유사이동의 특성과 이를 유사이동 모형과 결합시키는 방향에 대해 검토한다. 현재까지 진행된 연구 결과를 분석하면 SFGM은 질량보존을 만족시키면서도 점착성 유사의 입도분포를 모의할 수 있는 장점을 가지는 것으로 판단된다. 특히 난수발생의 단계에서 적절한 확률분포형을 선정하고 확률매개변수의 보정이 이루어지는 경우에는 높은 정확도를 가지는 입도분포 모의가 가능하다. 가는 모래를 대상으로 하는 비점착성 유사의 경우에는 추계학적인 유사이동 모형의 개발이 활발히 이루어져 왔다. 개발된 모형은 실제 측정값에 적용되어 다양한 학술적 가능성을 보여왔다. 따라서 SFGM의 개발이 점착성 유사의 이동모형과 결합되는 경우에는 점착성 유사가 지배적인 다양한 환경에서의 거동 특성을 이해할 때 매우 유용할 것으로 판단된다. 응집모형은 난류의 강도에 지배적인 영향을 받으며 유사의 입경 및 밀도 변화를 계산한다는 점을 고려할 때 유사이동 모형 역시 난류 강도에 대한 정보를 계산할 수 있는 지배방정식을 필요로 한다. 향후 개발될 추계학적 점착성 유사의 이동모형은 난류에 대한 정보, SFGM의 결합 등을 필요조건으로 가진다.

  • PDF

Effect of turbulent motion on size distribution of suspended flocs (난류 거동이 점착성 부유사의 입도분포에 미치는 영향)

  • Byun, Jisun;So, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.25-25
    • /
    • 2021
  • 점착성 유사는 비점착성 유사에 비해 1차입자의 크기가 작아 1차입자간의 점착력이 중요한 역할을 하는 유사를 말한다. 점착성 유사는 비점착성 유사에 비해 크기가 작아 입자의 전자기적 점착력의 영향을 무시할 수 없으므로 점착력으로 인해 입자들은 서로 응집하는 동시에 입자들 간의 충돌에 의하여 파괴되는 과정을 거친다. 이러한 응집과 파괴가 지속되는 일련의 과정을 응집현상이라 한다. 점착성 유사는 응집과정을 통해 일차입자보다 크기가 크며 수십 개에서 수천 개의 일차입자와 물의 덩어리인 플럭을 형성하게 된다. 흐름 내 존재하는 플럭의 응집현상에 가장 지배적인 영향을 미치는 인자로 난류 거동이 알려진 바 있다. 본 연구에서는 난류 거동에 따른 점착성 플럭의 입도분포 변화를 살펴보고자 하였으며, 점착성 유사 입도분포 모형을 개발하였다. 수치모형의 개발은 확률과정(또는 추계과정)의 개념을 바탕으로 한다. 점착성 유사의 응집현상을 구성하는 응집과정은 다양한 연구를 통해 메커니즘들이 규명된 것과 달리 파괴과정은 난류로 인해 발생하며 무작위한 것으로 여겨진다. 무작위한 플럭의 파괴과정을 확률과정으로 가정하고 매개변수 중 하나를 대수정규분포를 따르는 난수로 고려하였다. 개발된 모형의 검증은 연안지역에서 점착성 플럭의 거동을 측정한 연구결과와의 비교를 통해 수행하였으며, 흐름 유속의 연직분포와 유사 농도의 연직분포, 응집현상 이후 플럭의 평형크기와 입도분포가 모두 합리적으로 계산되는 것이 확인되었다. 더불어 모의 결과에서는 대수정규분포를 따르는 동일한 난수를 적용하였음에도 불구하고 하상으로부터 거리가 가까워짐에 따라 플럭입도분포가 단봉분포(Unimodal Distribution)와 이봉분포(Bimodal Distribution)가 모두 계산되는 것으로 나타났다. 이는 모형의 개발과정에서 플럭의 가능 최대 크기를 콜모고로브 길이규모로 제한한 것과 관련이 있다. 난류 흐름 내 존재하는 플럭의 크기가 응집현상을 통해 난류의 콜모고로브 길이규모까지 성장하는 경우, 난류의 전단응력이 급격하게 증가하여 파괴과정이 활발해지고 응집과정이 저하된다는 것은 널리 알려진 사실이다. 이러한 사실을 바탕으로 플럭의 가능최대 크기를 콜모고로브 길이규모로 제한하였으며, 하상으로부터의 거리에 따라 콜모고로브 길이규모의 변화로 인해 콜모고로브 길이규모 부근에서 하나의 최빈값이 추가로 나타나는 것으로 이해된다. 수치모의 결과로부터 얻어진 콜모고로브 길이규모와 입도분포 형태의 상관관계를 보다 정확하게 이해하기 위해 실측 자료들을 검토해 본 결과, 균질한 재료를 이용한 실험실 실험결과에서 플럭 이봉분포의 최빈값이 콜모고로브 길이규모와 일치하는 것이 확인되었다. 연안지역에서 측정을 수행한 자료들에서도 이봉분포 또는 다봉분포와 콜모고로브 길이 규모와의 상관성을 찾아볼 수 있었다.

  • PDF

Development and application of cohesive sediment transport model (점착성 유사의 이동 모형화 및 적용)

  • Son, Min-Woo;Lee, Guan-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.331-335
    • /
    • 2011
  • 흔히 진흙으로 불리는 점착성 유사는 모래 등의 비점착성 유사와는 다른 특성을 보인다. 가장 큰 특징은 점착력에 의해 서로 엉겨 붙어 큰 덩어리(플럭)를 형성하고 다시 큰 플럭이 파괴되는 과정인 응집현상(Flocculation Process)을 보인다는 것이다. 이 응집현상의 과정을 통해 플럭은 크기 및 밀도를 지속적으로 변화시킨다. 크기 및 밀도의 변화는 플럭의 침강속도를 변화시켜 점착성 유사의 부유, 퇴적, 이송, 확산의 과정에 직접적인 영향을 미친다. 응집현상은 플럭의 침강속도 뿐 아니라 부피농도와 질량농도 사이의 비선형적 관계를 야기하여 흐름 운동량 방정식 유도, 난류의 모형화 등에서도 비점착성 유사와 다른 방향으로 진행된다. 점착성 유사가 우세한 지역의 또 다른 특성은 자기하중에 의한 압밀현상에 따라 발생하는 가변적인 한계소류력이다. 따라서 점착성 유사의 이동을 모형화 하는 과정에서는 가변적인 침식율의 가정 등을 통해 이에 대한 고려가 반드시 이루어져야 한다. 흐름의 운동량 방정식 및 난류 모형에서는 플럭의 부피 농도와 질량농도가 각 항의 물리적 의미에 부합하도록 개별적으로 선택 및 적용되어야 질량보존의 문제 등으로 발생할 수 있는 계산상의 오류를 배제할 수 있다. 적용 결과, 점착성 유사가 우세한 지역에서 나타나는 높은 부유 및 흐름정체기에서의 부유사 존재 등의 특성이 점착성 유사 이동을 위한 모형에서 보다 합리적으로 계산된다는 사실이 확인되었다. 그리고 비점착성 유사에 적합한 이동 모형이 점착성이 우세한 지역에 적용될 경우, 상황에 따라 유사량을 과대 및 과소 산정할 수 있다는 결론이 도출되었다. 조류의 영향이 존재하는 하구부의 경우에는 조류의 형태와 비대칭성에 따라 유사량의 차이가 큰 것으로 나타났다. 조류의 형태는 주로 하구부의 지형에 의해 결정되므로 준설, 매립, 확폭 등과 같은 하구부에서의 사업이 진행되는 경우, 유사량 변화에 대한 고려가 반드시 이루어져야 할 것으로 판단된다.

  • PDF