DOI QR코드

DOI QR Code

Classification of Single-interface Surface Plasmons by Using Complex Differential Diagram

복소차분도표를 이용한 단일경계 표면플라즈몬 모드 이해

  • Lee, Dong-Jin (Department of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (Department of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (Department of Information and Communication Engineering, Inha University)
  • 이동진 (인하대학교 정보통신공학과) ;
  • 이승걸 (인하대학교 정보통신공학과) ;
  • 오범환 (인하대학교 정보통신공학과)
  • Received : 2011.01.26
  • Accepted : 2011.03.15
  • Published : 2011.04.25

Abstract

In this paper, we propose the complex differential diagram to classify surface plasmon waveguide modes with single interface. To date, surface plasmon waveguide modes are classified using the sign change of the group velocity in the dispersion relation that describes the interrelations between the real wavenumber of the propagation direction and the photon energy. The surface plasmon waveguide modes have the wavenumbers of the direction perpendicular to that in which the wave propagates as well as of the propagation direction, so it is necessary to classify the modes using all of these wavenumbers. The complex differential diagram is a graphical representation with variables of the difference between the real component and the imaginary component of the wavenumber. Using this diagram, the specific mode classification is possible, and it is easy to comprehensively analyze the wavenumber as the function of the photon energy.

본 논문에서는 단일경계 표면플라즈몬 도파로의 모드특성을 잘 이해하기 위해 복소차분도표를 제안한다. 기존의 표면플라즈몬 모드는 군속도의 부호가 바뀌는 부분을 기준으로 분류되었는데, 여기에서 군속도는 표면플라즈몬 모드 진행방향의 전파상수와 광자 에너지에 대한 분산 관계식에서 접선의 기울기이다. 표면플라즈몬 모드는 진행방향에 대해 수직한 방향의 전파상수도 가지고 있기 때문에 이를 종합적으로 이용하여 모드를 분류하는 것이 필요하다. 복소차분도표는 전파상수의 실수 부와 허수 부의 차이를 변수로 하여 나타낸 도표로서 이를 이용하면 모드 분류가 가능하고 또한 광자 에너지에 따른 종합적인 전파상수의 변화 경향을 살펴보는 것이 용이하다.

Keywords

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83-91 (2010). https://doi.org/10.1038/nphoton.2009.282
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193-204 (2010). https://doi.org/10.1038/nmat2630
  4. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407-1-9 (2006). https://doi.org/10.1103/PhysRevB.73.035407
  5. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133-2135 (2006). https://doi.org/10.1364/OL.31.002133
  6. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2009). https://doi.org/10.1038/nphoton.2008.249
  7. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402-406 (2007). https://doi.org/10.1038/nphoton.2007.95
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897-902 (2009). https://doi.org/10.1021/nl803868k
  9. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283-286 (2009). https://doi.org/10.1038/nphoton.2009.47
  10. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35, 529-531 (2010). https://doi.org/10.1364/OL.35.000529
  11. S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng. 87, 1315-1318 (2010). https://doi.org/10.1016/j.mee.2009.12.056
  12. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405-1-11 (2005). https://doi.org/10.1103/PhysRevB.72.075405
  13. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370