DOI QR코드

DOI QR Code

K-domain Linearization Using Fiber Bragg Grating Array Based on Fourier Domain Optical Coherence Tomography

광섬유 브라그 격자를 이용한 퓨리어 영역 광 결맞음 단층 촬영에서의 파수영역 선형화

  • Lee, Byoung-Chang (Department of Physics, Chungnam National University) ;
  • Eom, Tae-Joong (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Jeon, Min-Yong (Department of Physics, Chungnam National University)
  • 이병창 (충남대학교 자연과학대학 물리학과) ;
  • 엄태중 (광주과학기술원 고등광기술연구소) ;
  • 전민용 (충남대학교 자연과학대학 물리학과)
  • Received : 2010.11.29
  • Accepted : 2011.04.04
  • Published : 2011.04.25

Abstract

We demonstrate a k-domain linearization using a fiber Bragg grating (FBG) array for Fourier domain optical coherence tomography based on a wavelength swept laser. The k-domain linearization is carried out with an interpolation method using a FBG array with five FBGs. The measured signal-to-noise ratio from the point spread function after k-domain linearization is 12 dB improved over that of without k-domain linearization at the 1 mm depth of the sample. Clear OCT imaging of the slide glass with k-domain linearization could be obtained.

반도체 광 증폭기와 파브리-페롯 가변 필터를 이용한 파장 훑음 레이저 기반 광 결맞음 단층 촬영을 구성하고, 이로부터 선명한 이미징을 얻기 위한 파수 영역 선형화를 구현하였다. 파수 영역 선형화는 5 개의 서로다른 공진 파장을 가진 광섬유 격자로 이루어진 어레이를 이용하여 보간법으로 수행하였다. 샘플단의 1 mm 깊이에서 파수 영역 선형화를 수행한 후 점 분포 함수(point spread function)로부터 측정한 SNR(signal-to-noise ratio)은 12 dB 향상된 값을 얻어냈다. 또한 파수 영역 선형화 전과 후에 대해 슬라이드 글라스를 이용하여 OCT 이미징을 얻어낸 결과 파수 영역 선형화가 매우 잘 되었음을 확인할 수 있었다.

Keywords

References

  1. S. H. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 ${\mu}m$ wavelength,” Opt. Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598
  2. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt Express 14, 726-735 (2006). https://doi.org/10.1364/OPEX.14.000726
  3. S. H. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
  4. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547-2554 (2008). https://doi.org/10.1364/OE.16.002547
  5. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548-6553 (1997). https://doi.org/10.1364/AO.36.006548
  6. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength swept filter,” Opt. Lett. 28, 1981-1983 (2003). https://doi.org/10.1364/OL.28.001981
  7. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3518 (2005). https://doi.org/10.1364/OPEX.13.003513
  8. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006). https://doi.org/10.1364/OE.14.003225
  9. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523-10538 (2005). https://doi.org/10.1364/OPEX.13.010523
  10. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916-8937 (2008). https://doi.org/10.1364/OE.16.008916
  11. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1, 709-716 (2007). https://doi.org/10.1038/nphoton.2007.228
  12. T. J. Eom, Y.-C. Ahn, C.-S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16, 030501 (2011). https://doi.org/10.1117/1.3552602

Cited by

  1. Characteristics of a Wavelength-swept Laser with a Polygon-based Wavelength Scanning Filter vol.25, pp.2, 2014, https://doi.org/10.3807/KJOP.2014.25.2.061
  2. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter vol.13, pp.12, 2013, https://doi.org/10.3390/s130809669
  3. Dynamic measurement for electric field sensor based on wavelength-swept laser vol.22, pp.13, 2014, https://doi.org/10.1364/OE.22.016139