Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.2.072

K-domain Linearization Using Fiber Bragg Grating Array Based on Fourier Domain Optical Coherence Tomography  

Lee, Byoung-Chang (Department of Physics, Chungnam National University)
Eom, Tae-Joong (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
Jeon, Min-Yong (Department of Physics, Chungnam National University)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.2, 2011 , pp. 72-76 More about this Journal
Abstract
We demonstrate a k-domain linearization using a fiber Bragg grating (FBG) array for Fourier domain optical coherence tomography based on a wavelength swept laser. The k-domain linearization is carried out with an interpolation method using a FBG array with five FBGs. The measured signal-to-noise ratio from the point spread function after k-domain linearization is 12 dB improved over that of without k-domain linearization at the 1 mm depth of the sample. Clear OCT imaging of the slide glass with k-domain linearization could be obtained.
Keywords
Wavelength swept laser; Fabry-Perot tunable filter; K-domain linearization; Fiber Bragg grating; Optical coherence tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523-10538 (2005).   DOI
2 C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916-8937 (2008).   DOI
3 D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1, 709-716 (2007).   DOI
4 T. J. Eom, Y.-C. Ahn, C.-S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16, 030501 (2011).   DOI
5 S. H. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 ${\mu}m$ wavelength,” Opt. Express 11, 3598-3604 (2003).   DOI
6 W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt Express 14, 726-735 (2006).   DOI
7 S. H. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).   DOI
8 M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547-2554 (2008).   DOI
9 F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548-6553 (1997).   DOI
10 S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength swept filter,” Opt. Lett. 28, 1981-1983 (2003).   DOI
11 R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3518 (2005).   DOI
12 R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).   DOI