DOI QR코드

DOI QR Code

Enhancing the Reproducibility of a Photoacoustic Signal Using a Minimum-volume Cell

최소 부피 광음향 셀의 광음향 신호 재현성 향상에 관한 연구

  • Received : 2011.01.26
  • Accepted : 2011.03.21
  • Published : 2011.04.25

Abstract

Reproducibility obtained by a minimum-volume cell for photoacoustic (PA) signals is strongly dependent upon the sealing materials and sealing efficiency. Therefore, we have proposed, designed, and constructed an apparatus to enhance the sealing efficiency, and we have examined the reproducibility of amplitude and phase of PA signals with a minimum-volume cell. In particular, we have measured the PA signal as a function of modulation frequency for various rubber O-rings by using our apparatus. The results show that a silicon rubber O-ring can improve the reproducibility of the PA signal and phase by up to 53.4% and 80.4%, respectively, compared to that obtained by using the conventional sealing material, vacuum grease.

광음향 분광학 연구에 빈번히 사용되는 최소 부피 개방형 광음향 셀을 이용하여 광음향 신호를 측정할 경우 최소 부피 광음향셀의 밀폐상태는 광음향 신호의 재현성에 큰 영향을 미친다. 따라서 본 논문에서는 최소 부피 광음향 셀의 밀폐 효율을 높일 수 있는 고무오링 밀폐재를 적용한 구조를 설계하고 제작한 후, 제작한 구조체를 이용하여 다양한 재질의 고무 오링에 대한 광음향 신호를 주파수 별로 측정하고 분석하였다. 실험 결과 진공 그리스를 이용하여 광음향 셀을 밀폐하는 기존의 방식과 비교했을 때, 실리콘 고무 오링을 밀폐재로 사용하는 경우 광음향 신호의 진폭과 위상의 재현성이 각각 최대 53.4%와 80.4%까지 향상될 수 있음을 알 수 있었다.

Keywords

References

  1. A. P. Neto, H. Vargas, N. F. Leite, and L. C. M. Miranda, “Photoacoustic investigation of semiconductors: influence of carrier diffusion and recombination in PbTe and Si,” Phys. Rev. B 40, 3924-3930 (1989). https://doi.org/10.1103/PhysRevB.40.3924
  2. A. P. Neto, H. Vargas, N. F. Leite, and L. C. M. Miranda, “Photoacoustic characterization of semiconductors: transport properties and thermal diffusivity in GaAs and Si,” Phys. Rev. B 41, 9971-9979 (1990). https://doi.org/10.1103/PhysRevB.41.9971
  3. P. M. Nikolic, D. M. Todorovic, D. G. Vasilijevic, P. Mihajlovic, K. Radulovic, Z. D. Ristovsi, J. Elazer, V. Blagojevic, and M. D. Dramicanin, “A photoacoustic investigation of transport properties and thermal diffusivity of InSb single crystals,” Microelectronics Journal 27, 459-469 (1996). https://doi.org/10.1016/0026-2692(95)00025-9
  4. E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604-2609 (1998). https://doi.org/10.1063/1.367022
  5. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley and Sons, Hoboken, NJ, USA, 1984), Chapter 12.
  6. M. D. da Silva, I. N. Bandeira, and L. C. M. Miranda, “Open-cell photoacoustic radiation detector,” J. Phys. E : Sci. Instrum. 20, 1476-1478 (1987). https://doi.org/10.1088/0022-3735/20/12/009
  7. M. V. Marquezini, N. Cella, A. M. Mansanares, H. Vargas, and L. C. M. Miranda, “Open photoacoustic cell spectroscopy,” Meas. Sci. Technol. 2, 391 (1991).
  8. D. M. Todorovic and P. M. Nikolic, “A novel design of photoacoustic cells for the investigation of semiconductors,” in Proc. 20th International Conference on Microelectronics (Nis, Serbia, Sep. 1995), pp. 165-168.
  9. D. M. Todorovic, P. M. Nikolic, and A. I. Bojicic, “Thermoelastic and electronic strain contributions to the frequency transmission photoacoustic effect in semiconductors,” Phys. Rev. B 55, 15631-15642 (1997). https://doi.org/10.1103/PhysRevB.55.15631
  10. P. R. Barja, A. M. Mansanares, E. C. da Silva, and P. L. C. A. Alves, “Photoacoustics as a tool for the diagnosis of radicular stress: measurements in eucalyptus seedlings,” Rev. Sci. Instrum. 74, 1 (2003). https://doi.org/10.1063/1.1523642
  11. L. C. M. Miranda, “Theory of the photoacoustic effect in semiconductors influence of carrier diffusion and recombination,” Appl. Opt. 21, 2923-2928 (1982). https://doi.org/10.1364/AO.21.002923
  12. V. A. Sablikov and V. B. Sandomirskii, “The photoacoustic effect in semiconductors,” Phys. Stat. Sol. B 120, 471 (1983). https://doi.org/10.1002/pssb.2221200203
  13. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976). https://doi.org/10.1063/1.322296
  14. U. Zammit, M. Marinelli, and R. Pizzoferrato, “Surface states and buried interface states studies in semiconductors by photothermal deflection spectroscopy,” J. Appl. Phys. 69, 3286-3290 (1991). https://doi.org/10.1063/1.348549