DOI QR코드

DOI QR Code

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion

저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향

  • Han, Man-Bae (Dept. of Mechanical and Automotive Engineering, Keimyung Univ.)
  • 한만배 (계명대학교 기계자동차공학과)
  • Received : 2010.08.19
  • Accepted : 2011.01.26
  • Published : 2011.04.01

Abstract

The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

1.9L 커먼레일 직접분사 디젤 엔진을 이용하여 1500rpm 2.6bar BMEP 에서 다량의 EGR(약 41%)과 연료분사 제어를 통한 저온디젤연소 영역에서 연료의 특성이 연소와 배기가스에 미치는 영향을 분석하였다. 사용한 연료는 세탄가 55 에 대하여 방향족 성분(20%, 45%, vol. %)과 T90 온도($270^{\circ}C$, $340^{\circ}C$)의 조합으로 네 개이다. 주어진 실험 조건에서 모든 연료에 대하여 착화지연 기간이 증가함에 따라 PM 은 단조적으로 저감되었다. 동일한 착화지연 기간에 대하여 T90 온도가 높은 연료들의 PM 발생이 높았다. NOx 는 동일한 MFB50% 위치에서 모든 연료가 동등 수준이었다. THC, CO 발생은 연료 조성에 관계없이 동일한 착화지연 기간에 대하여 동등 수준이었다. 또한 착화지연 기간 증가에 따라 THC, CO 배출이 증가하였는데 이는 과혼합 증가가 주 원인으로 판단된다.

Keywords

References

  1. Heywood, J. B., 1988, "Internal Combustion Engine Fundamentals,” McGraw Hill, New York.
  2. Akagawa, H., Miyamoto, T., Harada, A., Sasaki, S., Shimazaki, N., Hashizume, T. and Tsujimura, K., 1999, "Approaches to Solve Problems of the Premixed Lean Diesel Combustion," SAE Transactions-Journal of Engines, Vol. 109, SAE Paper No. 1999-01-0183.
  3. Akihama, K., Takatori, Y., Inagaki, K., Sasaki, S. and Dean, A., 2001, "Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature," SAE Transactions - Journal of Engines, Vol. 110, SAE Paper No. 2001-01-0655.
  4. Kimura, S., Aoki, O., Kitahara, Y. and Aiyoshizawa, E., 2001, "Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standard," SAE Transactions - Journal of Fuels & Lubricants, Vol. 110, SAE Paper No. 2001-01-0200.
  5. Musculus, M. P. B., Lachaux, T., Pickett, L. M. and Idicheria, C. A., 2007, "End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines," SAE Transactions-Journal of Passenger Cars: Mechanical Systems, Vol. 116, SAE Paper No. 2007-01-0907.
  6. Han, M., Assanis, D. N. and Bohac, S. V., 2008, "Comparison of HC Species from Diesel Combustion Modes and Characterization of a Heat-up DOC Formulation,” Int. J. of Automotive Technology, Vol. 9, No. 4, pp. 405-413. https://doi.org/10.1007/s12239-008-0049-y
  7. McMillan, M. L. and Halsall, R., 1988, "Fuel Effects on Combustion and Emissions in a Direct Injection Diesel Engine,” SAE Transactions - Journal of Fuels and Lubricants, Vol. 97, SAE paper No.881650.
  8. Li, T., Okabe, Y., Izumi, H., Shudo, T. and Ogawa, H., 2006, "Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties,” SAE paper No. 2006-01-3387.
  9. Ickes, A. M., Bohac, S. V. and Assanis, D. N., 2009, "Effect of Fuel Cetane Number on a Premixed Diesel Combustion Mode,” Journal of Engine Res., Vol. 10, No. 4, pp. 251-263. https://doi.org/10.1243/14680874JER03809
  10. Kitano, K., Nishiumi, R., Tsukasaki, Y., Tanaka, T. and Morinaga, M., 2003, "Effects of Fuel Properites on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine,” SAE paper No. 2003-01-1815.
  11. Kee., S., Mohammadi, A., Kidoguchi, Y. and Miwa, K., 2005, "Effects of Aromatic Hydrocarbons on Fuel Decomposition and Oxidation Process in Diesel Combustion,” SAE Transactions - Journal of Fuels and Lubricants, Vol. 114, SAE Paper No. 2005-01-2086.
  12. Han, M., 2010, “Hydrocarbon Speciation in Low Temperature Diesel Combustion,” Transactions of the KSME B, Vol. 34, No.4, pp.417-422. https://doi.org/10.3795/KSME-B.2010.34.4.417
  13. Butts, R.T., Foster, D., Krieger, R. andrie, M., Ra, Y., 2010, “Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion,” SAE Paper No. 2010-01-0337.
  14. Bunting, B.G., Eaton, S.J. and Crawford, R.W., 2009. “Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine,” SAE Paper No. 2009-01-2645.
  15. Han, M., 2010, "Effect of Aromatics and T90 Temperature for Low Cetane Number Fuels on Exhaust Emissions in Low Temperature Diesel Combustion,” Transactions of the KSME B, Vol.34, No.12, pp.1121-1126.
  16. Petersen, B. R., Ekoto, I. W., Miles, P. C., 2010, “An Investigation Into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions From a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime,” SAE Transactions – Journal of Engines, Vol. 119, SAE Paper No. 2010-01-1470.