DOI QR코드

DOI QR Code

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier

입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구

  • Received : 2010.08.04
  • Accepted : 2011.01.19
  • Published : 2011.04.01

Abstract

The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.

실험과 수치해석을 이용하여 차량용 PEMFC 시스템의 공기 공급부 운전환경에 따른 막 가습기의 성능 특성에 대한 연구를 수행하였다. Nafion 막을 이용한 Shell-and-Tube 형 막가습기의 입구온도변화에 따른 열 및 물 전달 특성에 알아보기 위한 실험을 수행하였으며, 이로부터 가습기 막을 통한 물전달 성능이 입구 온도에 대하여 비선형적으로 변화하는 특성을 확인하였다. Nafion 막의 물전달 계수를 경계면의 온도와 상대습도의 함수로서 모델링하여 단일 튜브형 막에 대한 수치해석을 수행하였으며, 해석 결과를 실험 결과와 비교하였다. 막을 통한 국소물질량유속 분포가 튜브 내에서 급격하고도 비선형적으로 변화하는 해석 결과를 얻을 수 있었으며, 이로부터 입구 온도가 가습기 성능에 미치는 영향을 논의하였다.

Keywords

References

  1. Lee, Y., Kim, Y., Jang, Y. and Choi, J. M. 2007 "Effects of External Humidification on the Performance of a Polymer Electrolyte Fuel Cell," J. Mech.anical Science Technology, Vol. 21, pp. 2188-2195. https://doi.org/10.1007/BF03177479
  2. Chen, D. and Peng, H., 2005, "A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control," J. Dyn. Sys., Meas. Ctrl., Vol. 127, pp. 424-432. https://doi.org/10.1115/1.1978910
  3. Yu, S., Lee, Y., Bae, H., Hwang, J. Y. and Ahn, K., 2009, "Mass and Heat Transfer Analysis of Membrane Humidifer with a Simple Lumped Mass Model," Trans. of the KSME(B), Vol. 33, No. 8, pp. 596-603.
  4. Park, S. K., Choe, S.Y. and Choi, S. H., 2008, "Dynamic Modeling and Analysis of a Shell-and-Tube Type Gas-to-Gas Membrane Humidifier for PEM Fuel Cell Application." J. Hydrogen Energy, Vol. 33, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  5. Springer, T. F., Zatwodzinski, T. A. and Gonesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. Electrochem. Soc., Vol. 138, No. 8, pp. 2234-2342.
  6. Pukrushpan, J. T., Peng, H. and Stenfanopoulou, A. G., 2002, "Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model," Proceeding of ASME International Mechanical Engineering Congress & Exposition, New Orleans, USA.
  7. Perma Pure LLC .
  8. Khandelwal, M. and Mench, M. M., 2006, "Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials," J. Power sources, Vol. 161, pp 1106-1105. https://doi.org/10.1016/j.jpowsour.2006.06.092
  9. Hwang, J. Y., Kang, K. and Park, M., 2007, "A Study on the Characteristics of Heat and Water Transfer in a Membrane Humidifier for PEMFC," J. Industrial Technology, Vol. 16, pp. 127-138.
  10. Comsol Inc. .

Cited by

  1. Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction vol.37, pp.5, 2013, https://doi.org/10.3795/KSME-B.2013.37.5.503