DOI QR코드

DOI QR Code

Comparison of Electro-Osmotic Pumps with Two Different Types of Porous Glass Frits

두 종류의 다공성 유리막을 이용한 전기삼투 펌프의 비교 연구

  • Received : 2010.09.08
  • Accepted : 2011.01.19
  • Published : 2011.04.01

Abstract

Electro-osmotic pumps were fabricated by using two types of porous glass frits. The performance of these pumps was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM sodium tertraborate decahydrate buffer. Maximum flow rate and current when ROBU porous glass frits were used were higher than those when DURAN porous glass frits were used because of the high porosity of the ROBU glass frits. However, the maximum pressure when ROBU glass frits were used was similar to that when DURAN glass frits were used. The therrmodynamic efficiency of a pump with ROBU porous glass frits is approximately twice that of a pump with DURAN porous glass frits. Further, the maximum flow rate at maximum current in the case of ROBU porous glass frits is high. However, it is lower than the maximum pressure at maximum current in the case of DURAN porous glass frits. Further, in this study, we also verified the effectiveness of ROBU glass frits when high flow rate is required and of DURAN glass frits when a high pressure is required.

본 연구에서는 두 종류의 다공성 유리막을 이용하여 전기삼투 펌프를 제작하였다. 전기삼투 펌프의 성능은 탈이온수와 1 mM 나트륨 테트라붕산염 데카수화물 완충액을 이용하여 최대유량, 최대전류 그리고 최대압력의 항으로 표현하였다. 최대유량과 최대전류는 ROBU 사의 다공성 유리막의 높은 공극률에 기인하여 DURAN 사의 다공성 유리막 보다 높은 값을 가졌다. 그러나 최대압력은 비슷하였다. 열역학적 효율은 ROBU 사의 다공성 유리막이 DURAN 사의 다공성 유리막보다 2 배 정도 높은 값을 가졌으며, 최대유량당 최대전류 역시 ROBU 사의 다공성 유리막이 높은 값을 가졌다. 그러나 최대압력당 최대전류는 DURAN 사의 다공성 유리막에서 더 높은 값을 가졌다. 본 연구에서는 ROBU 사의 다공성 유리막은 낮은 출력으로 높은 유량을 구현할 수 있고, DURAN 사의 다공성 유리막은 낮은 출력으로 높은 압력을 구현할 수 있음을 확인하였다.

Keywords

References

  1. Wallner, J. T., Nagar, N., Friedrich C. R. and Bergstrom, P. L., 2007, “Macro Porous Silicon as Pump for Electro-Osmotic Pumps,” Physica Status Solidi (a), Vol.204, No.5, pp.1327-1331. https://doi.org/10.1002/pssa.200674326
  2. Laser, D. J. and Santiago, J. G., 2004, “A Review of Micropumps,” Journal of Micromechanics and Mircoengineering, Vol.14, No.6, pp.R35-R64. https://doi.org/10.1088/0960-1317/14/6/R01
  3. Wang, X., Cheng, C., Wang, S. and Liu S., 2009 “Electroosmotic Pumps and Their Applications in Microfluidic Systems,” Microfluidics and Nanofluidics, Vol.6, No.2, pp.145-162. https://doi.org/10.1007/s10404-008-0399-9
  4. Yao, S. and Santiago J. G., 2003, “Porous Glass Electroosmotic Pumps: Theory,” Journal of Colloid and Interface Science, Vol.268, No.1, pp.133-142. https://doi.org/10.1016/S0021-9797(03)00731-8
  5. Yao, S., Hertzog, D. E., Zeng S., Mikkelsen, J. C. and Santiago J. G., 2003, “Porous Glass Electroosmotic Pumps: Design and Experiments,” Journal of Colloid and Interface Science, Vol.268, No.1, pp.143-153. https://doi.org/10.1016/S0021-9797(03)00730-6
  6. Yao, S., Myers, A. M., Posner, J. D., Rose, K. A. and Santiago J. G., 2006, “Electroosmotic Pumps Fabricated from Porous Silicon Membranes,” Journal of Microelelctromechanical Systems, Vol.15, No.3, pp.717-728. https://doi.org/10.1109/JMEMS.2006.876796
  7. Kwon, K. and Kim, D., 2010, “Development of Porous Silicon Electro-Osmotic Pumps for High Flow Rate per Current Flow Delivery of Organic solvents,” Transactions of the KSME (B), Vol.34, No.2, pp.105-111. https://doi.org/10.3795/KSME-B.2010.34.2.105
  8. Chen, Y. F., Li M. C., Hu, Y. H., Chang W. J. and Wang C. C., 2008, ”Low-voltage Electroosmotic Pumping Using Porous Anodic Alumina Membranes,” Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 145-162.
  9. Chen, Y. F., Hu, Y. H., Chou Y. I., Lai S. M. and Wang C. C., 2010, “Surface Modification of Nano-Porous Anodic Alumina Membranes and Its Use in Electroosmotic Flow,” Sensors and Actuators B: Chemical, Vol.145, No.1, pp.575-582. https://doi.org/10.1016/j.snb.2009.12.061
  10. Vajandar, S. K., Xu, D., Markov D. A., Wikswo J. P., Hofmeister, W. and Li, D., 2007, “$SiO_2-Coated$ Porous Anodic Alumina Membranes for High Flow Rate Electroosmotic Pumping,” Nanotechnology, Vol.18, No.27, pp.275705 https://doi.org/10.1088/0957-4484/18/27/275705
  11. Jiang, L., Mikkelsen, J., Koo, J. M., Huber, D., Yao, S., Zhang, L., Zhou P., Maveety, J. G., Prasher, R., Santiago, J. G., Kenny, T. W. and Goodsen K. E., 2002, “Closed-Loop Electoosmotic Microchannel Cooling System for VLSI Circuits,” IEEE Transactions on Components and Packaging Technologies, Vol.25, No.3, pp.347-355 https://doi.org/10.1109/TCAPT.2002.800599
  12. Buie, C. R., Posner, J. D., Fabian, T., Cha, S. W., Kim, D., Prinz, F. B., Eaton, J. K. and Santiago, J. G., 2006, “Water Management in Proton Exchange Membrane Fuel Cells Using Integrated Electroosmotic Pumping,” Journal of Power Sources, Vol.161, No.1, pp.191-202. https://doi.org/10.1016/j.jpowsour.2006.03.021
  13. Buie, C. R., Kim, D., Liester, S. and Santiago, J. G., 2007, “An Electro-Osmotic Fuel Pump for Direct Methanol Fuel Cells,” ElectroChemical and Solid-State Letters, Vol.10, No.11, pp.B196-B200 https://doi.org/10.1149/1.2772083
  14. Kwon, K. and Kim, D, 2010, “Air Pumps for Polymer Electrolyte Membrane Fuel Cells,” Transactions of the KSME (B), Vol. 34, No. 7, pp. 715-720. https://doi.org/10.3795/KSME-B.2010.34.7.715
  15. http://www.duran-group.com/
  16. http://www.robuglas.com/
  17. Kim, D., Posner J. D. and Santigo J. G., 2008, “High Flow Rate per Power Electroosmotic Pumping Using Low Ion Density Solvents,” Sensors and Actuators A:Physics, Vol.141, No.1, pp.201-212. https://doi.org/10.1016/j.sna.2007.07.023