• Title/Summary/Keyword: 세탄가

Search Result 25, Processing Time 0.035 seconds

세탄가와 세탄 지수

  • 문풍길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.06a
    • /
    • pp.26-40
    • /
    • 1987
  • 경유을 디젤 엔진의 연료로 사용하기 위해서는 세탄가가 맞아야 한다. 경유를 엔진에 주입하면 쉽게 착화되지 않는다. 개솔린은 점화가 너무 잘 되어 탈인데, 경유는 착화가 더디어서 탈이다. 착화 지연을 수치로 표시하는 용어로서 세탄가, 세탄지수, 디젤지수의 세 가지가 있다. 세낱가는 경유의 품질을대표하는 가장 중요한 규격 항목이다. 세낱가의 높고 낮음에 따라 경유의 품질을 쉽게 판정할 수 있다. 세탄가가 낮으면, 연소가 거칠어 지고 검은 연기가 치솟는다. 미국 ASTM은 경유의 세탄가 규격을 40으로 정하고 있다. 우리나라 경유의 세탄가 규격은 45로 정하고 있다. 미국의 경유 세탄가 규격은 40이지만, 미국 대도시의 버스, 트럭에서는 검은 연기가 치솟는 일이 드물다. 우리나라의 경유 세탄가 규격은 미국보다 훨씬 높지마, 우리나라 대도시의 버스, 트럭에서는 검은 연기가 치솟는 일이 많다.

  • PDF

Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel (경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석)

  • Jeon, Hwayeon;Kim, Ji Yeon;Kim, Shin;Yim, Eui Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1134-1144
    • /
    • 2018
  • Cetane Number is one of the quality standard for diesel, which assesses the compatibility of ignition quality of diesel compression in diesel engines. Cetane number must be upper 52 to keep the recent diesel quality standards. It is known that if cetane number is high, there will be shorter ignition delay periods than being lower. On the other hands, if cetane number is too high that exceeds the quality standard, there will increase the air pollution and decrease of the fuel efficiency because incomplete combustion. In South Korea, various methods are being used to measure the cetane number such as cetane number that used CFR engine, cetane index from calculate density and distillation temperature and derived cetane number to make up for CFR engine that ignition delay in high temperature is implemented. In this study will be conducted by collecting the diesel from the major oil companies, and try to analyze the correlation between the different methods of cetane number with various factors. At the results of this study, it was shown that the cetane index is high then cetane engine and derived cetane number. therefore it will be necessary to additional research for out of cetane number quality standards.

Determination of the Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel by Additives (첨가제에 따른 경유연료의 세탄가 유도세탄가 및 세탄지수 분석)

  • Lim, Young-Kwan;Kim, Jong-Ryeol;Jung, Choong-Sup;Yim, Eui Soon;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.375-381
    • /
    • 2010
  • Cetane number of diesel fuel for compression ignition engine is one of main properties for fuel ignition quality. Recently the cetane index has been replaced the cetane number in order to resolve the disadvantage of CFR engine test, but these two value have slightly difference values due to addition of various additives. In this study, we analyzed the cetane number, derived cetane number and cetane index for diesel fuel which was blended with various ratios of biodiesel, kerosene and cetane improver as additives. As a result, Cetane number showed the similar value with derived cetane number, but cetane index showed quite different value with cetane number when biodiesel and cetane improver were used as additives.

The Spray and Combustion Characteristics by the Ratio of Cetane Number Enhancing Additives in Diesel (세탄가 향상 혼합 연료에 따른 디젤 연료의 분무 및 연소특성에 관한 연구)

  • Kim, J.H.;Lee, S.W.;Lee, H.S.;Choi, J.H.;Lee, Y.C.;Cho, Y.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying different composition rates of octane number in diesel fuel to a common-rail system. For the visualization, the experiment was carried out under different injection pressures and different cetane number. The test was done by three different types of diesel fuels, the different composition rates of cetane number in diesel fuel and HBD. In summary, this research aims to investigate the combustion characteristics in the application of fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide with fundamentals of the development of diesel engines in future.

  • PDF

The Study of Correlation between Biodiesel Components and Derived Cetane Number (바이오디젤 구성분자와 유도세탄가 상관관계 연구)

  • Lim, Young-Kwan;Park, So-Ra;Kim, Jong-Ryeol;Yim, Eui-Soon;Jung, Choong-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.122-129
    • /
    • 2011
  • Biodiesel produced from triglyceride which is main component of animal fats and vegetable oils by methanolysis was known for remarkable cetane number. In this study, the derived cetane number of 3 kinds of biodiesel came from vegetable oils such as soybean oil, palm oil, and perilla oil and 2 kind of biodiesel which were produced from beef tallow and pork lard were analyzed using IQT (Ignition quality tester). In IQT test result, the derived cetane number of palm- , beef tallow- and pork lard's biodiesel were more excellent than other biodiesels. After analysis of biodiesel composed molecular by gas chromatography-mass and determination of the derived cetane number of pure biodiesel components using IQT, we have found that the low olefin contented and long alkyl chained biodiesel have excellent derived cetane number.

Synthesis of Carbonate Derivatives and Derived Cetane Number for the Use of Diesel Additives (경유 첨가제로 쓰일 수 있는 카보네이트 유도체의 합성과 세탄가 향상도)

  • Cho, Chang-Yong;Chung, Keun-Woo;Kim, Young-Wun;Kim, Yeong-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.234-239
    • /
    • 2010
  • Carbonate derivatives were synthesized for the use of diesel additives and the derived cetane numbers of the derivatives were measured. Some carbonate ester derivatives were synthesized from 1,2-glycerol carbonate and long alkyl chain fatty acids. To improve the solubility, we introduced unsaturated groups into aliphatic carbons and alkyl group into ${\alpha}$-carbon to the carbonyl group. The derived cetane numbers obtained from ASTM method were increased up to 1.0, which means some carbonate derivatives could be potential diesel additives.

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 2011
  • The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.