References
- ITRS, http://www.itrs.net/Links/2006Update/2006- UpdateFinal. htm
- B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., Vol. 79, Issue 8, pp. 1172, 2001. https://doi.org/10.1063/1.1396632
- W. Steinhogl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range.” Phys. Rev. B, Vol. 66, pp. 075414, 2002. https://doi.org/10.1103/PhysRevB.66.075414
- Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett., Vol. 84, pp. 2941, 2000. https://doi.org/10.1103/PhysRevLett.84.2941
- J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, Vol. 69, No. 3, pp. 255, 1999. https://doi.org/10.1007/s003390050999
- S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56, 1991. https://doi.org/10.1038/354056a0
- J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, and H. Dai, “Quantum interference and ballistic transmission in nanotube electron waveguides,” Phys. Rev. Lett., Vol. 87, pp. 106801, 2001. https://doi.org/10.1103/PhysRevLett.87.106801
- M. Nihei, A. Kawabata, and Y. Awano, “Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects,” Jpn. J. Appl. Phys., Vol. 42, pp. L721, 2003. https://doi.org/10.1143/JJAP.42.L721
- G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, and W. Hoenlein, “How do carbon nanotubes fit into the semiconductor roadmap?,” Nanolett., Vol. 2, pp. 257, 2003.
- J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett., Vol. 82, pp. 2491, 2003 https://doi.org/10.1063/1.1566791
- Y.M. Choi, S.W. Lee, H.S. Yoon, M.S. Lee, H.J. Kim, I.T. Han, Y.H. Son, I.S. Yeo, U.I. Chung, and J.T. Moon, “Integration and Electrical Properties of Carbon Nanotube Array for Interconnect Applications,” in Proceedings of the IEEE-NANO Conference 2006, p. 262, 2006.
- Sunwoo Lee, Seongho Moon, Hong Sik Yoon, Xiaofeng Wang, Dong Woo Kim, In-Seok Yeo, U-In Chung, Joo-Tae Moon, and Jaegwan Chung, “Selective growth of carbon nanotube for via interconnects by oxidation and selective reduction of catalyst,” Appl. Phys. Lett., Vol. 93, pp. 182106, 2008. https://doi.org/10.1063/1.3021363
- Sunwoo Lee, Boong-Joo Lee, and Paik-Kyun Shin, “Carbon Nanotube Interconnection and Its Electrical Properties for Semiconductor Applications,” Jpn. J. Appl. Phys., Vol. 48, pp. 125006, 2009. https://doi.org/10.1143/JJAP.48.125006
- M. Nihei, M. Horibe, A. Kawabata and Y. Awano, “Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects,” Jpn. J. Appl. Phys., Vol. 43, pp. 1856, 2004. https://doi.org/10.1143/JJAP.43.1856
Cited by
- Removal of residual oxide layer formed during chemical–mechanical-planarization process for lowering contact resistance vol.206, pp.13, 2012, https://doi.org/10.1016/j.surfcoat.2011.12.045
- Integration of Carbon Nanotube Interconnects for Full Compatibility with Semiconductor Technologies vol.158, pp.11, 2011, https://doi.org/10.1149/2.018111jes
- Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process vol.7, pp.6, 2012, https://doi.org/10.5370/JEET.2012.7.6.983