DOI QR코드

DOI QR Code

Selective Growth of Carbon Nanotubes using Two-step Etch Scheme for Semiconductor Via Interconnects

  • Lee, Sun-Woo (Dept. of Electrical Information, Inha Technical Colleg) ;
  • Na, Sang-Yeob (Dept. of Computer Science, Namseoul University)
  • Received : 2010.07.16
  • Accepted : 2010.11.10
  • Published : 2011.03.01

Abstract

In the present work, a new approach is proposed for via interconnects of semiconductor devices, where multi-wall carbon nanotubes (MWCNTs) are used instead of conventional metals. In order to implement a selective growth of carbon nanotubes (CNTs) for via interconnect, the buried catalyst method is selected which is the most compatible with semiconductor processes. The cobalt catalyst for CNT growth is pre-deposited before via hole patterning, and to achieve the via etch stop on the thin catalyst layer (ca. 3nm), a novel 2-step etch scheme is designed; the first step is a conventional oxide etch while the second step chemically etches the silicon nitride layer to lower the damage of the catalyst layer. The results show that the 2-step etch scheme is a feasible candidate for the realization of CNT interconnects in conventional semiconductor devices.

Keywords

References

  1. ITRS, http://www.itrs.net/Links/2006Update/2006- UpdateFinal. htm
  2. B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., Vol. 79, Issue 8, pp. 1172, 2001. https://doi.org/10.1063/1.1396632
  3. W. Steinhogl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range.” Phys. Rev. B, Vol. 66, pp. 075414, 2002. https://doi.org/10.1103/PhysRevB.66.075414
  4. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett., Vol. 84, pp. 2941, 2000. https://doi.org/10.1103/PhysRevLett.84.2941
  5. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, Vol. 69, No. 3, pp. 255, 1999. https://doi.org/10.1007/s003390050999
  6. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56, 1991. https://doi.org/10.1038/354056a0
  7. J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, and H. Dai, “Quantum interference and ballistic transmission in nanotube electron waveguides,” Phys. Rev. Lett., Vol. 87, pp. 106801, 2001. https://doi.org/10.1103/PhysRevLett.87.106801
  8. M. Nihei, A. Kawabata, and Y. Awano, “Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects,” Jpn. J. Appl. Phys., Vol. 42, pp. L721, 2003. https://doi.org/10.1143/JJAP.42.L721
  9. G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, and W. Hoenlein, “How do carbon nanotubes fit into the semiconductor roadmap?,” Nanolett., Vol. 2, pp. 257, 2003.
  10. J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett., Vol. 82, pp. 2491, 2003 https://doi.org/10.1063/1.1566791
  11. Y.M. Choi, S.W. Lee, H.S. Yoon, M.S. Lee, H.J. Kim, I.T. Han, Y.H. Son, I.S. Yeo, U.I. Chung, and J.T. Moon, “Integration and Electrical Properties of Carbon Nanotube Array for Interconnect Applications,” in Proceedings of the IEEE-NANO Conference 2006, p. 262, 2006.
  12. Sunwoo Lee, Seongho Moon, Hong Sik Yoon, Xiaofeng Wang, Dong Woo Kim, In-Seok Yeo, U-In Chung, Joo-Tae Moon, and Jaegwan Chung, “Selective growth of carbon nanotube for via interconnects by oxidation and selective reduction of catalyst,” Appl. Phys. Lett., Vol. 93, pp. 182106, 2008. https://doi.org/10.1063/1.3021363
  13. Sunwoo Lee, Boong-Joo Lee, and Paik-Kyun Shin, “Carbon Nanotube Interconnection and Its Electrical Properties for Semiconductor Applications,” Jpn. J. Appl. Phys., Vol. 48, pp. 125006, 2009. https://doi.org/10.1143/JJAP.48.125006
  14. M. Nihei, M. Horibe, A. Kawabata and Y. Awano, “Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects,” Jpn. J. Appl. Phys., Vol. 43, pp. 1856, 2004. https://doi.org/10.1143/JJAP.43.1856

Cited by

  1. Removal of residual oxide layer formed during chemical–mechanical-planarization process for lowering contact resistance vol.206, pp.13, 2012, https://doi.org/10.1016/j.surfcoat.2011.12.045
  2. Integration of Carbon Nanotube Interconnects for Full Compatibility with Semiconductor Technologies vol.158, pp.11, 2011, https://doi.org/10.1149/2.018111jes
  3. Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process vol.7, pp.6, 2012, https://doi.org/10.5370/JEET.2012.7.6.983