DOI QR코드

DOI QR Code

In Vitro Antagonistic Activity Evaluation of Lactic Acid Bacteria (LAB) Combined with Cellulase Enzyme Against Campylobacter jejuni Growth in Co-Culture

  • Received : 2010.07.06
  • Accepted : 2010.10.12
  • Published : 2011.01.28

Abstract

The antibacterial effects of nine lactic acid bacteria (LAB) against Campylobacter jejuni were investigated by using agar gel diffusion and co-culture assays. Some differences were recorded between the inhibition effects measured with these two methods. Only two LAB, Lb. pentosus CWBI B78 and E. faecium THT, exhibited a clear anti- Campylobacter activity in co-culture assay with dehydrated poultry excreta mixed with ground straw (DPE/GS) as the only growth substrate source. It was observed that the supplementation of such medium with a cellulase A complex (Beldem S.A.) enhanced the antimicrobial effect of both LAB strains. The co-culture medium acidification and the C. jejuni were positively correlated with the cellulase A concentration. The antibacterial effect was characterized by the lactic acid production from the homofermentative E. faecium THT and the lactic and acetic acids production from the heterofermentative Lb. pentosus CWBI B78. The antagonistic properties of LAB strains and enzyme combination could be used in strategies aiming at the reduction of Campylobacter prevalence in the poultry production chain and consequently the risk of human infection.

Keywords

References

  1. Abulreesh, H. H., T. A. Paget, and R. Goulder. 2006. Campylobacter in waterfowl and aquatic environments: Incidence and methods of detection. Environ. Sci. Technol. 40: 7122-7131. https://doi.org/10.1021/es060327l
  2. Angenent, L. T., K. Karim, M. H. Al-Dahhan, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22: 477-485. https://doi.org/10.1016/j.tibtech.2004.07.001
  3. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  4. Codex Alimentarius Commission. 2002. Discussion paper on risk management strategies for Campylobacter ssp. in poultry. In FAO/WHO (ed.), CX/FH 03/5. Orlando Florida, USA.
  5. Chaveerach, P., L. J. Lipman, and F. van Knapen. 2004. Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. Int. J. Food Microbiol. 90: 43-50. https://doi.org/10.1016/S0168-1605(03)00170-3
  6. Dagnelie, P. 1996. Theories et Methodes Statistiques, Vol.2. Presses Agronomiques de Gembloux, Gembloux, Belgium.
  7. Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168: 167.
  8. European Economic Community. 1998. Council regulation (EC) No. 2821/98 of 17 December 1998 on authorisation ban of certain antibiotics concerning the additives in animals food. Vol. L351/4. Off. J. Eur. Communities, Brussels.
  9. Esteban, J. I., B. Oporto, G. Aduriz, R. A. Juste, and A. Hurtado. 2008. A survey of food-borne pathogens in free-range poultry farms. Int. J. Food Microbiol. 123: 177-182. https://doi.org/10.1016/j.ijfoodmicro.2007.12.012
  10. Gilliland, S. E. and M. L. Speck. 1977. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Protect. 40: 820-823. https://doi.org/10.4315/0362-028X-40.12.820
  11. Gilpin, B. J., B. Robson, P. Scholes, F. Nourozi, and L. W. Sinton. 2009. Survival of Campylobacter spp. in bovine faeces on pasture. Lett. Appl. Microbiol. 48: 162-166. https://doi.org/10.1111/j.1472-765X.2008.02496.x
  12. Trachoo, N., J. F. Frank, and N. J. Stern. 2002. Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot. 65: 1110-1116. https://doi.org/10.4315/0362-028X-65.7.1110
  13. Heres, L., B. Engel, H. A. Urlings, J. A. Wagenaar, and F. van Knapen. 2004. Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella. Vet. Microbiol. 99: 259-267. https://doi.org/10.1016/j.vetmic.2003.12.008
  14. Heuer, O. E., K. Pedersen, J. S. Andersen, and M. Madsen. 2001. Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Lett. Appl. Microbiol. 33: 269-274. https://doi.org/10.1046/j.1472-765X.2001.00994.x
  15. Kumar, R., S. Singh, and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biot. 35: 377-391. https://doi.org/10.1007/s10295-008-0327-8
  16. Lin, J. 2009. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 6: 755-765. https://doi.org/10.1089/fpd.2008.0247
  17. Line, J. E. 2006. Influence of relative humidity on transmission of Campylobacter jejuni in broiler chickens. Poultry Sci. 85: 1145-1150. https://doi.org/10.1093/ps/85.7.1145
  18. Ljungh, A. and T. Wadstrom. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7: 73-89.
  19. Logan, T. W. and S. L. Baretlett. 2000. Poultry house litter treatment. United States patent 6,017,525.
  20. Mayr-Harting, A., A. J. Hedges, and R. C. W. Berkeley. 1972. Methods for studying bacteriocins, pp. 315-422. In J. R. Norris and D. W. Ribbons (eds.). Methods in Microbiology. Academic Press, London, New York.
  21. Mead, G. C. 2002. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. World. Poult. Sci. J. 58: 169-178. https://doi.org/10.1079/WPS20020016
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  23. Musikasang, H., A. Tani, A. H-kittikun, and S. Maneerat. 2009. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microb. Biot. 25: 1337-1345. https://doi.org/10.1007/s11274-009-0020-8
  24. Nazef, L., Y. Belguesmia, A. Tani, H. Prevost, and D. Drider. 2008. Identification of lactic acid bacteria from poultry feces: Evidence on anti-Campylobacter and anti-Listeria activities. Poult Sci. 87: 329-334. https://doi.org/10.3382/ps.2007-00282
  25. Ouwehand, A. and S. Vesterlund. 2004. Antimicrobial components from lactic acid bacteria, p. 139-159. In S. Salminen, A. von Wright, and A. Ouwehand (eds.). Lactic Acid Bacteria: Microbiological and Functional Aspects. Marcel Dekker Inc., New York, Basel.
  26. Reuter, G. 2001. Probiotics - possibilities and limitations of their application in food, animal feed, and in pharmaceutical preparations for man and animals. Berliner Und Munchener Tierarztliche Wochenschrift 114: 410-419.
  27. Russell, J. B. 1992. Another explanation for the toxicity of fermentation acids at low pH - anion accumulation versus uncoupling. J. Appl. Bacteriol. 73: 363-370. https://doi.org/10.1111/j.1365-2672.1992.tb04990.x
  28. Salminen, S., A. V. Wright, and A. Ouwehand. 2004. Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker, New York.
  29. Schillinger, U. and F. K. Lucke. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901-1906.
  30. Schoeni, J. L. and A. C. L. Wong. 1994. Inhibition of Campylobacter-jejuni colonization in chicks by defined competitive-exclusion bacteria. Appl. Environ. Microbiol. 60: 1191-1197.
  31. Shane, S. M. 2000. Campylobacter infection of commercial poultry. Rev. Sci. Tech. 19: 376-395. https://doi.org/10.20506/rst.19.2.1224
  32. Sinton, L. W., R. R. Braithwaite, C. H. Hall, and M. L. Mackenzie. 2007. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 73: 7917-7925. https://doi.org/10.1128/AEM.01620-07
  33. Svetoch, E. A., N. J. Stern, B. V. Eruslanov, Y. N. Kovalev, L. I. Volodina, V. V. Perelygin, et al. 2005. Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J. Food Prot. 68: 11-17. https://doi.org/10.4315/0362-028X-68.1.11
  34. Tiquia, S. M., J. H. C. Wan, and N. F. Y. Tam. 2002. Microbial population dynamics and enzyme activities during composting. Compost Sci. Util. 10: 150-161. https://doi.org/10.1080/1065657X.2002.10702075
  35. Urdaneta, A. B., M. Fondevila, J. Balcells, C. Dapoza, and C. Castrillo. 2000. In vitro microbial digestion of straw cell wall polysaccharides in response to supplementation with different sources of carbohydrates. Aust. J. Agr. Res. 51: 393-399. https://doi.org/10.1071/AR99079
  36. Van Deun, K., F. Haesebrouck, F. Van Immerseel, R. Ducatelle, and F. Pasmans. 2008. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 37: 379-383. https://doi.org/10.1080/03079450802216603
  37. Vandeplas, S., C. Marcq, R. Dubois-Dauphin, Y. Beckers, P. Thonart, and A. Thewis. 2008. Contamination of poultry flocks by the human pathogen Campylobacter spp. and strategies to reduce its prevalence at the farm level. Biotech. Agr. Soc. Environ. 12: 317-334.
  38. Vandeplas, S., R. Dubois-Dauphin, C. Thiry, Y. Beckers, G. W. Welling, P. Thonart, and A. Thewis. 2009. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium. Poultry Sci. 88: 1643-1654. https://doi.org/10.3382/ps.2008-00479
  39. Vandeplas, S., R. Dubois-Dauphin, R. Palm, Y. Beckers, P. Thonart, and A. Thewis. 2009. Prevalence and sources of Campylobacter spp. contamination in free-range broiler production in Belgium. Biotech. Agr. Soc. Environ.
  40. Wilson, D. J., E. Gabriel, A. J. H. Leatherbarrow, J. Cheesbrough, S. Gee, E. Bolton, et al. 2008. Tracing the source of campylobacteriosis. Plos Genetics 4.
  41. Winter, C. K. and S. F. Davis. 2006. Organic foods. J. Food Sci. 71: R117-R124. https://doi.org/10.1111/j.1750-3841.2006.00196.x
  42. Wolfgang, A. 2004. Enzymes in Industry: Production and Applications. Wiley-VCH, Weinheim Germany.
  43. Zaunmuller, T., M. Eichert, H. Richter, and G. Unden. 2006. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 72: 421-429. https://doi.org/10.1007/s00253-006-0514-3
  44. Zhang, G. D., L. Ma, and M. P. Doyle. 2007. Potential competitive exclusion bacteria from poultry inhibitory to Campylobacter jejuni and Salmonella. J. Food Prot. 70: 867-873. https://doi.org/10.4315/0362-028X-70.4.867

Cited by

  1. Large‐scale feasibility of organic acids as a permanent preharvest intervention in drinking water of broilers and their effect on foodborne Campylobacter spp. before processing vol.116, pp.6, 2011, https://doi.org/10.1111/jam.12490
  2. Genome Sequence of Paenibacillus polymyxa Strain CICC 10580, Isolated from the Fruit of Noni ( Morinda citrifolia L.) Grown in the Paracel Islands vol.2, pp.4, 2011, https://doi.org/10.1128/genomea.00854-14
  3. Characterization of bacterial antimicrobial peptides active against Campylobacter jejuni vol.93, pp.4, 2015, https://doi.org/10.1139/cjc-2014-0411
  4. Recent Advances in Screening of Anti- Campylobacter Activity in Probiotics for Use in Poultry vol.7, pp.None, 2011, https://doi.org/10.3389/fmicb.2016.00553
  5. Identification of endophytic bacterial strain RSE1 from seeds of super hybrid rice Shenliangyou 5814 (Oryza sativa L.,) and evaluation of its antagonistic activity vol.82, pp.3, 2017, https://doi.org/10.1007/s10725-017-0265-4
  6. Probiotic potential of Lactobacillus isolates of chicken origin with anti- Campylobacter activity vol.80, pp.8, 2018, https://doi.org/10.1292/jvms.18-0092
  7. Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates vol.8, pp.1, 2011, https://doi.org/10.3390/microorganisms8010078
  8. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry vol.11, pp.5, 2011, https://doi.org/10.3390/ani11051355