DOI QR코드

DOI QR Code

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E. (Division of Microbiology, Department of Biology, Faculty of Science, University of Taif)
  • Received : 2010.07.11
  • Accepted : 2010.10.15
  • Published : 2011.01.28

Abstract

Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

Keywords

References

  1. Agricultural Research Service. 1995. U.S. Department of Agriculture, Agricultural Research Service Pesticide Properties: Diazinon. Accessed July 28, 2000, at http://www.arsusda.gov/rsml/textfiles/DIAZINON.
  2. Bakry, N. M., A. H. El-Rashidy, A. T. Eldefrawi, and M. E. Eldefrawi. 2006. Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholinic receptors. J. Biochem. Toxicol. 3: 235-259.
  3. Bavcon, M., P. Trebse, and L. Zupancic-Kralj. 2003. Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionization detector. Chemosphere 50: 595-601. https://doi.org/10.1016/S0045-6535(02)00643-4
  4. Cabrera, J. A., A. Kurtz, R. A. Sikora, and A. Schouten. 2010. Isolation and characterization of fenamiphos degrading bacteria. Biodegradation, 21: 1017-1027. https://doi.org/10.1007/s10532-010-9362-z
  5. Comeau, Y., C. W. Greer, and R. Samson. 1993. Role of inoculum preparation and density on the bioremediation of 2,4-D contaminated soil by bioagumentation. Appl. Microbiol. Technol. 38: 681-687.
  6. Cui, Zhongli, Shunpeng Li, and Guoping Fu. 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67: 4922-4925. https://doi.org/10.1128/AEM.67.10.4922-4925.2001
  7. Cycon, M., M. Wojcik, and Z. Piotrowska-Seget. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76: 494-501. https://doi.org/10.1016/j.chemosphere.2009.03.023
  8. Duquenne, P., N. R. Parekh, G. Gatroux, and J.-C. Fournier. 1996. Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuran residues from contaminated soils. Soil Biol. Biochem. 28: 1805-1811. https://doi.org/10.1016/S0038-0717(96)00287-8
  9. Extension Toxicology Network. 1996. EXTOXNET Pesticide Information Profiles: Diazinon. Accessed June 15, 2000, at http://ace.orst.edu/cgi-bin/mfs/01/pips/diazinon. htm?8#mfs.
  10. Gevao, B., K. T. Semple, and K. C. Jones. 2000. Bound pesticide residues in soil: A review. Environ. Pollut. 108: 3-14. https://doi.org/10.1016/S0269-7491(99)00197-9
  11. Ghassempour, A., A. Mohammadkhah, F. Najafi, and M. Rajabzadeh. 2002. Monitoring of the pesticide diazinon in soil, stem and surface water of rice fields. Anal. Sci. 18: 779-783. https://doi.org/10.2116/analsci.18.779
  12. Grimsley, J., V. Rastogi, and J. Wild. 1998. Biological detoxification of organophosphorus neurotoxins, pp. 557-613. In S. Sikdar and R. Irvine (eds.). Bioremediation: Principles and Practice - Biodegradation Technology Developments, Vol. 2. Technomic Pub., New York.
  13. Hayatsu, M., M. Hirano, and S. Tokuda. 2000. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiol. 66: 1737-1740 https://doi.org/10.1128/AEM.66.4.1737-1740.2000
  14. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Stanley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, Ninth Ed. Williams and Wilkins Co., Baltimore.
  15. Hong, Q., Z. Zhang, Y. Hong, and S. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeter. Biodegrad. 59: 55-61. https://doi.org/10.1016/j.ibiod.2006.07.013
  16. Horne, I., T. D Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371-3376. https://doi.org/10.1128/AEM.68.7.3371-3376.2002
  17. Jiang, J., R. Zhang, R. Li, J. Gu, and S. Li. 2007. Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18: 403-412. https://doi.org/10.1007/s10532-006-9075-5
  18. Karpouzas, D. G. and A. Walker. 2000. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biol. Biochem. 32: 1753-1762. https://doi.org/10.1016/S0038-0717(00)00093-6
  19. Karpouzas, D. G., A. Fotopoulou, U. Menkissoglu-Spiroudi, and B. K. Singh. 2005. Nonspecific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol. Ecol. 53: 369-378. https://doi.org/10.1016/j.femsec.2005.01.012
  20. Karpouzas, D. G. and B. K. Singh. 2006. Microbial degradation of organophosphorus xenobiotics: Metabolic pathways and molecular basis. Adv. Microb. Physiol. 51: 119-185.
  21. Kertesz, M. A., A. M. Cook, and T. Leisinger. 1994. Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiol. Rev. 15: 195-215. https://doi.org/10.1111/j.1574-6976.1994.tb00135.x
  22. Lakshmi, C. V., M. Kumar, and S. Khanna. 2008. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int. Biodeter. Biodegr. 62: 204-209. https://doi.org/10.1016/j.ibiod.2007.12.005
  23. Li, M. T., L. L. Hao, L. X. Sheng, and J. B. Xu. 2008. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1. Bioresource Technol. 99: 6878-6884. https://doi.org/10.1016/j.biortech.2008.01.048
  24. Liu, F., M. Hong, D. Liu, and Y. Li. 2007. Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J. Environ. Sci. 19: 1257-1260. https://doi.org/10.1016/S1001-0742(07)60205-8
  25. Miethling, R. and U. Karlson. 1996. Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP I and Sphingomonas chlorophenolica RA 2. Appl. Environ. Microbiol. 62: 4361-4366.
  26. Mulchandani, A., I. Kaneva, and W. Chen. 1999. Detoxification of organophosphate pesticides by immobilized Escherichia coli expressing organophosphorus hydrolase on cell surface. Biotechnol. Bioeng. 63: 216-223. https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2<216::AID-BIT10>3.0.CO;2-0
  27. Munnecke, D. M. and D. P. M. Hsieh. 1976. Pathways of microbial metabolism of parathion. Appl. Environ. Microbiol. 3: 63-69.
  28. Ohshiro, K., T. Kakuta, T. Sakai, H. Hirota, T. Hoshino, and T. Uchiyama. 1996. Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. J. Ferment. Bioeng. 82: 299-305. https://doi.org/10.1016/0922-338X(96)88823-4
  29. Ortiz-Hernandez, M. L. and E. Sanchez-Salinas. 2010. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev. Int. Contam. Ambient 26: 27-38.
  30. Qiu, X. H., W. Q. Bai, Q. Z. Zhong, M. Li, F. Q. He, and B. T. Li. 2006. Isolation and characterization of a bacterial strain of the genus Achrobactrum with methyl parathion mineralizing activity. J. Appl. Microbiol. 101: 986-994. https://doi.org/10.1111/j.1365-2672.2006.03016.x
  31. Ramadan, M. A., O. M. El-Tayeb, and M. Alexander.1990. Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Microbiol. 56: 1392-1396.
  32. Ramanathan, M. P. and D. Lalithakumari. 1999. Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl. Biochem. Biotechnol. 80: 1-12. https://doi.org/10.1385/ABAB:80:1:1
  33. Rani, M. S., K. V. Lakshmi, P. S. Devi, R. J. Madhuri, S. Aruna, K. Jyothi, G. Narasimha, and K. Venkateswarlu. 2008. Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr. J. Microbiol. Res. 2: 26-31.
  34. Richins, D., I. Kaneva, A. Mulchandani, and W. Chen. 1997. Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987. https://doi.org/10.1038/nbt1097-984
  35. Rosenberg, A. and M. Alexander. 1979. Microbial cleavage of various organophosphorus insecticides. Appl. Environ. Microbiol. 37: 886-891.
  36. Rousseaux, S., A. Hartmann, B. Lagacherie, S. Piutti, F. Andreux, and G. Soulas. 2003. Inoculation of an atrazinedegrading strain, Chelatobacter heintzii Cit 1, in four different soils: Effects of different inoculum densities. Chemosphere 51: 569-576. https://doi.org/10.1016/S0045-6535(02)00810-X
  37. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Ed. Cold Spring Harbor Laboratory Press, pp. 611-618.
  38. Sethunathan, N. N. and T. Yoshida. 1973. A Flavobacterium that degrades diazinon and parathion. Can. J. Microbiol. 19: 873-875. https://doi.org/10.1139/m73-138
  39. Singh, B. K., A. Walker, J. Denis, and D. J. Wright. 2006. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol. Biochem. 38: 2682-2693. https://doi.org/10.1016/j.soilbio.2006.04.019
  40. Singh, B. K., A. Walker, A. W. Morgan, J. Denis, and D. J. Wright. 2004. Biodegradation of chlorpyrifos by Enterobacter strain b-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol. 70: 4855-4863. https://doi.org/10.1128/AEM.70.8.4855-4863.2004
  41. Sorensen, S. R., C. N. Albers, and J. Aamand. 2008. Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl. Environ. Microbiol. 74: 2332-2340. https://doi.org/10.1128/AEM.02687-07
  42. Surekha, R. M., P. K. L. Lakshmi, D. Suvarnalatha, M. Jaya, S. Aruna, K. Jyothi, G. Narasimha, and K. Venkateswarlu. 2008. Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr. J. Microbiol. Res. 2: 026-031.
  43. Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland: Sinauer.
  44. Yasouri, F. N. 2006. Plasmid mediated degradation of diazinon by three bacterial strains, Pseudomonas sp., Flavobacterium sp. and Agrobacterium sp. Asian J. Chem. 18: 2437-2444.

Cited by

  1. Culturable bacterial pool from aged petroleum-contaminated soil: identification of oil-eating Bacillus strains vol.62, pp.4, 2011, https://doi.org/10.1007/s13213-012-0425-8
  2. Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae vol.81, pp.3, 2011, https://doi.org/10.1111/j.1574-6941.2012.01378.x
  3. Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide) vol.28, pp.3, 2012, https://doi.org/10.1007/s11274-011-0873-5
  4. Biosorption of aluminum, cobalt, and copper ions by Providencia rettgeri isolated from wastewater vol.53, pp.6, 2011, https://doi.org/10.1002/jobm.201100635
  5. Comparative Study on Adsorptive Characteristics of Diazinon in Water by Various Adsorbents vol.34, pp.9, 2011, https://doi.org/10.5012/bkcs.2013.34.9.2753
  6. Toxicity and bioremediation of pesticides in agricultural soil vol.12, pp.4, 2011, https://doi.org/10.1007/s11157-013-9320-4
  7. Isolation and Molecular Characterization of Heavy Metal-ResistantAzotobacter chroococcumfrom Agricultural Soil and Their Potential Application in Bioremediation vol.31, pp.7, 2011, https://doi.org/10.1080/01490451.2013.850561
  8. Cleaning From the Inside: Biodegradation of Organophosphate Pesticides by Pseudomonas plecoglossicida vol.1, pp.1, 2011, https://doi.org/10.17795/bhs-19193
  9. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens vol.11, pp.5, 2011, https://doi.org/10.1007/s13762-013-0322-0
  10. Pesticide relevance and their microbial degradation: a-state-of-art vol.13, pp.4, 2014, https://doi.org/10.1007/s11157-014-9341-7
  11. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation vol.13, pp.4, 2011, https://doi.org/10.1007/s11157-014-9342-6
  12. Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil vol.55, pp.3, 2011, https://doi.org/10.1002/jobm.201300576
  13. Isolation and Molecular Characterization of Heavy Metal-ResistantAlcaligenes faecalisfrom Sewage Wastewater and Synthesis of Silver Nanoparticles vol.32, pp.9, 2015, https://doi.org/10.1080/01490451.2015.1010754
  14. Potential of Biological Agents in Decontamination of Agricultural Soil vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/1598325
  15. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/5713939
  16. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil vol.8, pp.None, 2011, https://doi.org/10.3389/fmicb.2017.01946
  17. Effective pesticide nano formulations and their bacterial degradation vol.263, pp.None, 2011, https://doi.org/10.1088/1757-899x/263/2/022050
  18. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture vol.25, pp.22, 2011, https://doi.org/10.1007/s11356-017-9790-y
  19. Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2 vol.53, pp.5, 2011, https://doi.org/10.1080/03601234.2018.1431458
  20. Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum vol.74, pp.8, 2018, https://doi.org/10.1002/ps.4881
  21. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors vol.8, pp.None, 2011, https://doi.org/10.1038/s41598-018-20367-4
  22. Minute-Speed Biodegradation of Organophosphorus Insecticides by Cupriavidus nantongensis X1T vol.67, pp.49, 2011, https://doi.org/10.1021/acs.jafc.9b06157
  23. Azotobacter: A potential bio-fertilizer for soil and plant health management vol.27, pp.12, 2011, https://doi.org/10.1016/j.sjbs.2020.08.004
  24. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.717286
  25. Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae) vol.55, pp.3, 2011, https://doi.org/10.1021/acs.est.0c04952
  26. A new strategy for the adsorption and removal of fenitrothion from real samples by active-extruded MOF (AE-MOF UiO-66) as an adsorbent vol.45, pp.11, 2011, https://doi.org/10.1039/d0nj05693f
  27. Rapid biodegradation of diazinon using a novel strain of Candida pseudolambica vol.25, pp.None, 2011, https://doi.org/10.1016/j.eti.2021.102218