Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07006

In Vitro Antagonistic Activity Evaluation of Lactic Acid Bacteria (LAB) Combined with Cellulase Enzyme Against Campylobacter jejuni Growth in Co-Culture  

Dubois-Dauphin, Robin (University of Liege, Gembloux Agro-Bio Tech, Bio-Industries Unit)
Sabrina, Vandeplas (University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit)
Isabelle, Didderen (University of Liege, Gembloux Agro-Bio Tech, Bio-Industries Unit)
Christopher, Marcq (University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit)
Andre, Thewis (University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit)
Philippe, Thonart (University of Liege, Gembloux Agro-Bio Tech, Bio-Industries Unit)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 62-70 More about this Journal
Abstract
The antibacterial effects of nine lactic acid bacteria (LAB) against Campylobacter jejuni were investigated by using agar gel diffusion and co-culture assays. Some differences were recorded between the inhibition effects measured with these two methods. Only two LAB, Lb. pentosus CWBI B78 and E. faecium THT, exhibited a clear anti- Campylobacter activity in co-culture assay with dehydrated poultry excreta mixed with ground straw (DPE/GS) as the only growth substrate source. It was observed that the supplementation of such medium with a cellulase A complex (Beldem S.A.) enhanced the antimicrobial effect of both LAB strains. The co-culture medium acidification and the C. jejuni were positively correlated with the cellulase A concentration. The antibacterial effect was characterized by the lactic acid production from the homofermentative E. faecium THT and the lactic and acetic acids production from the heterofermentative Lb. pentosus CWBI B78. The antagonistic properties of LAB strains and enzyme combination could be used in strategies aiming at the reduction of Campylobacter prevalence in the poultry production chain and consequently the risk of human infection.
Keywords
Co-culture; lactic acid bacteria; Campylobacter; cellulolytic enzymes; antagonistic activity; lactic acid; acetic acid;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Heres, L., B. Engel, H. A. Urlings, J. A. Wagenaar, and F. van Knapen. 2004. Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella. Vet. Microbiol. 99: 259-267.   DOI
2 Heuer, O. E., K. Pedersen, J. S. Andersen, and M. Madsen. 2001. Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Lett. Appl. Microbiol. 33: 269-274.   DOI   ScienceOn
3 Kumar, R., S. Singh, and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biot. 35: 377-391.   DOI   ScienceOn
4 Lin, J. 2009. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 6: 755-765.   DOI
5 Gilpin, B. J., B. Robson, P. Scholes, F. Nourozi, and L. W. Sinton. 2009. Survival of Campylobacter spp. in bovine faeces on pasture. Lett. Appl. Microbiol. 48: 162-166.   DOI   ScienceOn
6 European Economic Community. 1998. Council regulation (EC) No. 2821/98 of 17 December 1998 on authorisation ban of certain antibiotics concerning the additives in animals food. Vol. L351/4. Off. J. Eur. Communities, Brussels.
7 Esteban, J. I., B. Oporto, G. Aduriz, R. A. Juste, and A. Hurtado. 2008. A survey of food-borne pathogens in free-range poultry farms. Int. J. Food Microbiol. 123: 177-182.   DOI   ScienceOn
8 Gilliland, S. E. and M. L. Speck. 1977. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Protect. 40: 820-823.   DOI
9 Trachoo, N., J. F. Frank, and N. J. Stern. 2002. Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot. 65: 1110-1116.   DOI
10 Mead, G. C. 2002. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. World. Poult. Sci. J. 58: 169-178.   DOI   ScienceOn
11 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.   DOI
12 Musikasang, H., A. Tani, A. H-kittikun, and S. Maneerat. 2009. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microb. Biot. 25: 1337-1345.   DOI   ScienceOn
13 Zaunmuller, T., M. Eichert, H. Richter, and G. Unden. 2006. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 72: 421-429.   DOI   ScienceOn
14 Line, J. E. 2006. Influence of relative humidity on transmission of Campylobacter jejuni in broiler chickens. Poultry Sci. 85: 1145-1150.   DOI
15 Zhang, G. D., L. Ma, and M. P. Doyle. 2007. Potential competitive exclusion bacteria from poultry inhibitory to Campylobacter jejuni and Salmonella. J. Food Prot. 70: 867-873.   DOI
16 Vandeplas, S., R. Dubois-Dauphin, C. Thiry, Y. Beckers, G. W. Welling, P. Thonart, and A. Thewis. 2009. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium. Poultry Sci. 88: 1643-1654.   DOI   ScienceOn
17 Vandeplas, S., R. Dubois-Dauphin, R. Palm, Y. Beckers, P. Thonart, and A. Thewis. 2009. Prevalence and sources of Campylobacter spp. contamination in free-range broiler production in Belgium. Biotech. Agr. Soc. Environ.
18 Wilson, D. J., E. Gabriel, A. J. H. Leatherbarrow, J. Cheesbrough, S. Gee, E. Bolton, et al. 2008. Tracing the source of campylobacteriosis. Plos Genetics 4.
19 Winter, C. K. and S. F. Davis. 2006. Organic foods. J. Food Sci. 71: R117-R124.   DOI   ScienceOn
20 Wolfgang, A. 2004. Enzymes in Industry: Production and Applications. Wiley-VCH, Weinheim Germany.
21 Tiquia, S. M., J. H. C. Wan, and N. F. Y. Tam. 2002. Microbial population dynamics and enzyme activities during composting. Compost Sci. Util. 10: 150-161.   DOI
22 Urdaneta, A. B., M. Fondevila, J. Balcells, C. Dapoza, and C. Castrillo. 2000. In vitro microbial digestion of straw cell wall polysaccharides in response to supplementation with different sources of carbohydrates. Aust. J. Agr. Res. 51: 393-399.   DOI   ScienceOn
23 Schillinger, U. and F. K. Lucke. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901-1906.
24 Van Deun, K., F. Haesebrouck, F. Van Immerseel, R. Ducatelle, and F. Pasmans. 2008. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 37: 379-383.   DOI   ScienceOn
25 Vandeplas, S., C. Marcq, R. Dubois-Dauphin, Y. Beckers, P. Thonart, and A. Thewis. 2008. Contamination of poultry flocks by the human pathogen Campylobacter spp. and strategies to reduce its prevalence at the farm level. Biotech. Agr. Soc. Environ. 12: 317-334.
26 Salminen, S., A. V. Wright, and A. Ouwehand. 2004. Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker, New York.
27 Sinton, L. W., R. R. Braithwaite, C. H. Hall, and M. L. Mackenzie. 2007. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 73: 7917-7925.   DOI   ScienceOn
28 Ljungh, A. and T. Wadstrom. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7: 73-89.
29 Schoeni, J. L. and A. C. L. Wong. 1994. Inhibition of Campylobacter-jejuni colonization in chicks by defined competitive-exclusion bacteria. Appl. Environ. Microbiol. 60: 1191-1197.
30 Shane, S. M. 2000. Campylobacter infection of commercial poultry. Rev. Sci. Tech. 19: 376-395.   DOI
31 Svetoch, E. A., N. J. Stern, B. V. Eruslanov, Y. N. Kovalev, L. I. Volodina, V. V. Perelygin, et al. 2005. Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J. Food Prot. 68: 11-17.   DOI
32 Nazef, L., Y. Belguesmia, A. Tani, H. Prevost, and D. Drider. 2008. Identification of lactic acid bacteria from poultry feces: Evidence on anti-Campylobacter and anti-Listeria activities. Poult Sci. 87: 329-334.   DOI   ScienceOn
33 Logan, T. W. and S. L. Baretlett. 2000. Poultry house litter treatment. United States patent 6,017,525.
34 Ouwehand, A. and S. Vesterlund. 2004. Antimicrobial components from lactic acid bacteria, p. 139-159. In S. Salminen, A. von Wright, and A. Ouwehand (eds.). Lactic Acid Bacteria: Microbiological and Functional Aspects. Marcel Dekker Inc., New York, Basel.
35 Reuter, G. 2001. Probiotics - possibilities and limitations of their application in food, animal feed, and in pharmaceutical preparations for man and animals. Berliner Und Munchener Tierarztliche Wochenschrift 114: 410-419.
36 Russell, J. B. 1992. Another explanation for the toxicity of fermentation acids at low pH - anion accumulation versus uncoupling. J. Appl. Bacteriol. 73: 363-370.   DOI
37 Mayr-Harting, A., A. J. Hedges, and R. C. W. Berkeley. 1972. Methods for studying bacteriocins, pp. 315-422. In J. R. Norris and D. W. Ribbons (eds.). Methods in Microbiology. Academic Press, London, New York.
38 Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168: 167.
39 Chaveerach, P., L. J. Lipman, and F. van Knapen. 2004. Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. Int. J. Food Microbiol. 90: 43-50.   DOI   ScienceOn
40 Dagnelie, P. 1996. Theories et Methodes Statistiques, Vol.2. Presses Agronomiques de Gembloux, Gembloux, Belgium.
41 Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.   DOI   ScienceOn
42 Codex Alimentarius Commission. 2002. Discussion paper on risk management strategies for Campylobacter ssp. in poultry. In FAO/WHO (ed.), CX/FH 03/5. Orlando Florida, USA.
43 Abulreesh, H. H., T. A. Paget, and R. Goulder. 2006. Campylobacter in waterfowl and aquatic environments: Incidence and methods of detection. Environ. Sci. Technol. 40: 7122-7131.   DOI   ScienceOn
44 Angenent, L. T., K. Karim, M. H. Al-Dahhan, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22: 477-485.   DOI   ScienceOn