DOI QR코드

DOI QR Code

Analysis of Expressed Sequence Tags from the Wood-Decaying Fungus Fomitopsis palustris and Identification of Potential Genes Involved in the Decay Process

  • Received : 2010.10.22
  • Accepted : 2011.01.01
  • Published : 2011.04.28

Abstract

Fomitopsis palustris, a brown-rot basidiomycete, causes the most destructive type of decay in wooden structures. In spite of its great economic importance, very little information is available at the molecular level regarding its complex decay process. To address this, we generated over 3,000 expressed sequence tags (ESTs) from a cDNA library constructed from F. palustris. Clustering of 3,095 high-quality ESTs resulted in a set of 1,403 putative unigenes comprising 485 contigs and 918 singlets. Homology searches based on BlastX analysis revealed that 78% of the F. palustris unigenes had a significant match to proteins deposited in the nonredundant databases. A subset of F. palustris unigenes showed similarity to the carbohydrateactive enzymes (CAZymes), including a range of glycosyl hydrolase (GH) family proteins. Some of these CAZyme-encoded genes were previously undescribed for F. palustris but predicted to have potential roles in biodegradation of wood. Among them, we identified and characterized a gene (FpCel45A) encoding the GH family 45 endoglucanase. Moreover, we also provided functional classification of 473 (34%) of F. palustris unigenes using the Gene Ontology hierarchy. The annotated EST data sets and related analysis may be useful in providing an initial insight into the genetic background of F. palustris.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, D. J. Miller, and M. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, et al. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25: 25-29. https://doi.org/10.1038/75556
  3. Audic, S. and J. M. Claverie. 1997. The significance of digital gene expression profiles. Genome Res. 7: 986-995.
  4. Baumert, M., P. R. Maycox, F. Navone, P. De Camilli, and R. Jahn. 1989. Synaptobrevin: An integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8: 379-384.
  5. Bendtsen, J. D., H. Nielsen, G. V. Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  6. Clausen, C. A. and F. Green III. 1996. Characterization of polygalacturonase from the brown-rot fungus Postia placenta. Appl. Microbiol. Biotechnol. 45: 750-754. https://doi.org/10.1007/s002530050758
  7. Conesa, A., S. Gotz, J. M Garcia-Gomez, J. Terol, M. Talon, and M. Robles. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  8. Dederich, D. A., G. Okwuonu, T. Garner, A. Denn, A. Sutton, M. Escotto, et al. 2002. Glass bead purification of plasmid template DNA for high throughput sequencing of mammalian genomes. Nucleic Acids Res. 30: e32. https://doi.org/10.1093/nar/30.7.e32
  9. Freimoser, F. M., S. Screen, S. Bagga, G. Hu, and R. J. St. Leger. 2003. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149: 239-247. https://doi.org/10.1099/mic.0.25761-0
  10. Galagan, J. E., M. R Henn, L. J. Ma, C. A. Cuomo, and B. Birren. 2005. Genomics of the fungal kingdom: Insight into eukaryotic biology. Genome Res. 15: 1620-1631. https://doi.org/10.1101/gr.3767105
  11. Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, et al. 1996. Life with 6000 genes. Science 274: 546, 563-567.
  12. Green III, F. and T. L. Highley. 1997. Mechanism of brown-rot decay: Paradigm or paradox. Int. Biodeterior. Biodegrad. 39: 113-124. https://doi.org/10.1016/S0964-8305(96)00063-7
  13. Green, F., C. A. Clausen, T. A. Kuster, and T. L. Highley. 1995. Induction of polygalacturonase and the formation of oxalic acid by pectin in bown-rot fungi. World J. Microbiol. Biotechnol. 11: 519-524. https://doi.org/10.1007/BF00286366
  14. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788.
  15. Hishida, A., T. Suzuki, T. Iijima, and M. Higaki. 1997. An extracellular cellulase of the brown-rot fungus, Tyromyces palustris. Mokuzai Gakkaishi 43: 686-691.
  16. Igarashi, K., T. Ishida, C. Hori, and M. Samejima. 2008. Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 74: 5628-5634. https://doi.org/10.1128/AEM.00812-08
  17. Ishihara, M. and K. Shimizu. 1980. Hemicellulases of brown rotting fungus, Tyromyces palustris. IV. Purification and some properties of an extracellular mannanase. Mokuzai Gakkaishi 26: 811-818.
  18. Ishihara, M. and K. Shimizu. 1983. Purification and some properties of an extracellular $\beta$-D-xylosidase and $\beta$-D-glucosidase complex. Mokuzai Gakkaishi 29: 315-323.
  19. Ishihara, M. and K. Shimizu. 1984. Purification and properties of two extracellular endo-cellulases from the brown rotting fungus, Tyromyces palustris. Mokuzai Gakkaishi 30: 79-87.
  20. Ishihara, M., K. Shimizu, and T. Ishihara. 1978. Hemicellulases of brown rotting fungus, Tyromyces palustris. III. Partial purification and mode of action of an extracellular xylanase. Mokuzai Gakkaishi 24: 108-115.
  21. Kamper, J., R. Kahmann, M. Bolker, L. J. Ma, T. Brefort, B. J. Saville, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97-101. https://doi.org/10.1038/nature05248
  22. Kawai, R., K. Igarashi, M. Yoshida, M. Kitaoka, and M. Samejima. 2006. Hydrolysis of beta-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,34-beta-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 71: 898-906. https://doi.org/10.1007/s00253-005-0214-4
  23. Keon, J., J. Antoniw, J. Rudd, W. Skinner, J. Hargreaves, and K. Hammond-Kosack. 2005. Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola anamorph Septoria tritici. Fungal Genet. Biol. 42: 376-389. https://doi.org/10.1016/j.fgb.2004.12.005
  24. Kerem, Z., K. A. Jensen, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54. https://doi.org/10.1016/S0014-5793(99)00180-5
  25. Kupfer, D. M., S. D. Drabenstot, K. L. Buchanan, H. Lai, H. Zhu, W. D Dyer, et al. 2004. Introns and splicing elements of five diverse fungi. Eukaryot. Cell 3: 1088-1100. https://doi.org/10.1128/EC.3.5.1088-1100.2004
  26. Loftus, B. J., E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, et al. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307: 1321-1324. https://doi.org/10.1126/science.1103773
  27. Martin, F., A. Aerts, D. Ahrén, A. Brun, E. G. Danchin, F. Duchaussoy, et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88- 92. https://doi.org/10.1038/nature06556
  28. Martinez, D., L. F. Larrondo, N. Putnam, M. D. Gelpke, K. Huang, K. J. Chapman, et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22: 695-700. https://doi.org/10.1038/nbt967
  29. Martinez. D., J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll, C. P. Kubicek, et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. P. Natl. Acad. Sci. USA 106: 1954-1959. https://doi.org/10.1073/pnas.0809575106
  30. Neumann, M. J. and K. F. Dobinson. 2003. Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet. Biol. 38: 54-62. https://doi.org/10.1016/S1087-1845(02)00507-8
  31. Niemenmaa, O., A. Uusi-Rauva, and A. Hatakka. 2007. Demethoxylation of $[O^{14}CH_3]$-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria Postia placenta. Biodegradation 19: 555-565.
  32. Panabieres, F., J. Amselem, E. Galiana, and J. Y. Le Berre. 2005. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet. Biol. 42: 611-623. https://doi.org/10.1016/j.fgb.2005.03.002
  33. Parkinson, J., A. Anthony, J. Wasmuth, R. Schmid, A. Hedley, and M. Blaxter. 2004. PartiGene--constructing partial genomes. Bioinformatics 20: 1398-1404. https://doi.org/10.1093/bioinformatics/bth101
  34. Parkinson, J., D. B. Guiliano, and M. Blaxter. 2002. Making sense of EST sequences by CLOBBing them. BMC Bioinformatics 3: 31. https://doi.org/10.1186/1471-2105-3-31
  35. Ribichich, K. F., S. M. Salem-Izacc, R. C. Georg, R. Z. Vencio, L. D. Navarro, and S. L. Gomes. 2005. Gene discovery and expression profile analysis through sequencing of expressed sequence tags from different developmental stages of the chytridiomycete Blastocladiella emersonii. Eukaryot. Cell 4: 455-464. https://doi.org/10.1128/EC.4.2.455-464.2005
  36. Rudd, S. 2003. Expressed sequence tags: Alternative or complement to whole genome sequence? Trends Plant Sci. 8: 321-329. https://doi.org/10.1016/S1360-1385(03)00131-6
  37. Sacadura, N. T. and B. J. Saville. 2003. Gene expression and EST analyses of Ustilago maydis germinating teliospores. Fungal Genet. Biol. 40: 47-64. https://doi.org/10.1016/S1087-1845(03)00078-1
  38. Saloheimo, A., B. Henrissat, A. M. Hoffrén, O. Teleman, and M. Penttilä. 1994. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol. Microbiol. 3: 219-228.
  39. Shanley, N. A., L. A. M. van den Broek, A. G. J. Voragen, and M. P. Coughlan. 1993. Isolation and characterization of an endopolygalacturonase from Phanerochaete chrysosporium. J. Biotechnol. 28: 179-197. https://doi.org/10.1016/0168-1656(93)90169-N
  40. Shimokawa, T., H. Shibuya, M. Nojiri, S. Yoshida, and M. Ishihara. 2008. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase EG-II from Fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl. Environ. Microb. 74: 5857-5861. https://doi.org/10.1128/AEM.00435-08
  41. Skinner, W., J. Keon, and J. Hargreaves. 2001. Gene information for fungal plant pathogens from expressed sequences. Curr. Opin. Microbiol. 4: 381-386. https://doi.org/10.1016/S1369-5274(00)00221-6
  42. Song, B. C., K. Y. Kim, J. J. Yoon, S. H. Sim, K. Lee, Y. S. Kim, et al. 2008. Functional analysis of a gene encoding endoglucanase that belongs to glycosyl hydrolase family 12 from the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. Biotechnol. 18: 404-409.
  43. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis MEGA software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  44. Tschernitz, J. L. 1973. Enzyme mixture improves creosote treatment of kiln-dried Rocky Mountain Douglas-fir. Forest Products J. 23: 30-38.
  45. Tsunoda, K, K. Nagashima, and M. Takahashi. 1997. High tolerance of wood-destroying fungi to copper-based fungicides. Mater Organic 31: 31-41.
  46. Vazquez-Garciduenas, S., C. A. Leal-Morales, and A. Herrera- Estrella. 1998. Analysis of the beta-1,3-Glucanolytic System of the Biocontrol Agent Trichoderma harzianum. Appl. Environ. Microb. 64: 1442-1446.
  47. Viaud, M., F. Legeai, J. M. Pradier, Y. Brygoo, F. Bitton, J. Weissenbach, et al. 2005. Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. Eur. J. Plant Pathol., 111: 139-146. https://doi.org/10.1007/s10658-004-1429-4
  48. Watanabe, T., T. Fujiwara, T. Umezawa, M. Shimada, and T. Hattori. 2008. Cloning of a cDNA encoding a NAD-dependent formate dehydrogenase involved in oxalic acid metabolism from the white-rot fungus Ceriporiopsis subvermispora and its gene expression analysis. FEMS Microb. Lett. 279: 64-70. https://doi.org/10.1111/j.1574-6968.2007.01022.x
  49. Wu, B., G. K. Hu, H. Feng, J. M. Wu, and Y. Z. Zhang. 2007. Cloning and expression of an alpha-amylase gene from Phanerochaete chrysosporium. Current Microbiology 55: 105- 113. https://doi.org/10.1007/s00284-006-0600-x
  50. Yelle, D. J., J. Ralph. F. Lu, and K. E. Hammel. 2008. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 10: 1844-1849. https://doi.org/10.1111/j.1462-2920.2008.01605.x
  51. Yockteng, R., S. Marthey, H. Chiapello, A. Gendrault, M. E. Hood, F. Rodolphe, et al. 2007. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes. BMC Genomics 8: 272. https://doi.org/10.1186/1471-2164-8-272
  52. Yoon, J. J., C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17: 800-805.
  53. Yoon, J. J. and Y. K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43: 487-492.
  54. Yoon, J. J., K. Igarashi, T. Kajisa, and M. Samejima. 2006. Purification, identification and molecular cloning of glycoside hydrolase family 15 glucoamylase from the brown-rot basidiomycete Fomitopsis palustris. FEMS Microbiol. Lett. 259: 288-294. https://doi.org/10.1111/j.1574-6968.2006.00279.x
  55. Yoon, J. J., K. Y. Kim, and C. J. Cha. 2008. Purification and characterization of thermostable beta-glucosidase from the brownrot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. 46: 51-55. https://doi.org/10.1007/s12275-007-0230-4
  56. Zhao, H. and D. Eide. 1996a. The yeast ZRT1 gene encodes the zinc transporter of a high affinity uptake system induced by zinc limitation. P. Natl. Acad. Sci. USA 93: 2454-2458. https://doi.org/10.1073/pnas.93.6.2454
  57. Zhao, H. and D. Eide. 1996b. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol. Chem. 271: 23203-23210. https://doi.org/10.1074/jbc.271.38.23203
  58. Zhao, H. and D. Eide. 1997. Zap1p, a metalloregulatory protein involved in zinc responsive transcriptional regulation in Saccharomyces cerevisiae. Mol. Cell Biol. 17: 5044-5052.

Cited by

  1. Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris vol.102, pp.15, 2011, https://doi.org/10.1007/s00253-018-9075-5
  2. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination vol.6, pp.1, 2011, https://doi.org/10.1186/s40168-018-0432-5