DOI QR코드

DOI QR Code

Influence of Varying Degree of Salinity-Sodicity Stress on Enzyme Activities and Bacterial Populations of Coastal Soils of Yellow Sea, South Korea

  • Siddikee, Md. Ashaduzzaman (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Tipayno, Sherlyn C. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Ki-Yoon (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2010.12.13
  • Accepted : 2011.01.17
  • Published : 2011.04.28

Abstract

To study the effects of salinity-sodicity on bacterial population and enzyme activities, soil samples were collected from the Bay of Yellow Sea, Incheon, South Korea. In the soils nearest to the coastline, pH, electrical conductivity ($EC_e$), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) were greater than the criteria of saline-sodic soil, and soils collected from sites 1.5-2 km away from the coastline were not substantially affected by the intrusion and spray of seawater. Halotolerant bacteria showed similar trends, whereas non-tolerant bacteria and enzymatic activities had opposite trends. Significant positive correlations were found between EC, exchangeable $Na^+$, and pH with SAR and ESP. In contrast, $EC_e$, SAR, ESP, and exchangeable $Na^+$ exhibited significant negative correlations with bacterial populations and enzyme activities. The results of this study indicate that the soil chemical variables related with salinity-sodicity are significantly related with the sampling distance from the coastline and are the key stress factors, which greatly affect microbial and biochemical properties.

Keywords

References

  1. Ahmad, N., R. H. Qureshi, and M. Qadir. 1990. Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degrad. Develop. 2: 277-284. https://doi.org/10.1002/ldr.3400020404
  2. Bandyapadhyay, B. K., B. Maji, H. S. Sen, and N. K. Tyagi. 2003. Coastal Soils of West Bengal - Their Nature, Distribution and Characteristics. Bulletin No. 1/2003, pp. 1-62. Central Soil Salinity Research Institute, Regional Research Station, Canning Town, West Bengal, India.
  3. Batra, L. and M. C. Manna. 1997. Dehydrogenase activity and microbial biomass carbon in salt affected soils of semiarid and arid regions. Arid Soil Res. Rehab. 11: 295-303. https://doi.org/10.1080/15324989709381481
  4. Bockheim, F. G. and S. Langley-Turnbaugh. 1997. Biogeochemical cycling in coniferous ecosystems on different aged marine terraces in coastal Oregon. J. Environ. Qual. 26: 292-301.
  5. Brisou, J., D. Courtois, and F. Denis. 1974. Microbiological study of a hypersaline lake in French Somaliland. Appl. Microbiol. 27: 819-822.
  6. Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371-376. https://doi.org/10.1097/00010694-196412000-00004
  7. Cookson, P. 1999. Special variation in soil urease activity around irrigated date palms. Arid Soil Res. Rehab. 13: 155- 169. https://doi.org/10.1080/089030699263393
  8. Dick, W. A. and M. A. Tabatabai. 1984. Kinetic parameters of phosphatases in soils and organic waste materials. Soil Sci. 137: 7-15. https://doi.org/10.1097/00010694-198401000-00002
  9. Egamberdieva, D., G. Renella, S. Wirth, and R. Islam. 2010. Secondary salinity effects on soil microbial biomass. Biol. Fertil. Soils 46: 445-449. https://doi.org/10.1007/s00374-010-0452-1
  10. Eivazi, F. and M. A. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 20: 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
  11. Eivazi, F. and M. A. Tabatabai. 1977. Phosphatases in soils. Soil Biol. Biochem. 9: 167-172. https://doi.org/10.1016/0038-0717(77)90070-0
  12. Frankenberger, W. T. and F. T. Bingham. 1982. Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J. 46: 1173- 1177. https://doi.org/10.2136/sssaj1982.03615995004600060011x
  13. Garc a, C. and T. Hernandez. 1996. Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178: 255-263. https://doi.org/10.1007/BF00011591
  14. Garcia, C., T. Hernandez, and F. Costa. 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biol. Biochem. 26: 1185-1191. https://doi.org/10.1016/0038-0717(94)90142-2
  15. Ghaly, F. M. 2002. Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Till. Res. 64: 173-178. https://doi.org/10.1016/S0167-1987(01)00240-9
  16. Grattan, S. R. and C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78: 127-157.
  17. Harris, R. F. 1981. Effect of water potential on microbial growth and activity, pp. 23-95. In J. F. Parr, W. R. Gardner, and L. F. Elliott (eds.). Water Potential Relations in Soil Microbiology. Special Publication No. 9. Soil Science Society of America Inc., Madison, WI, USA.
  18. Keren, R. 2000. Salinity, pp. 3-25. In M. E. Sumner (ed.). Handbook of Soil Science. CRC Press, Boca Raton.
  19. Kushner, D. J. 1993. Growth and nutrition of halophilic bacteria, pp. 87-89. In R. H. Vreeland and L. I. Hochstein (eds.). The Biology of Halophilic Bacteria. CRC Press, Boca Raton.
  20. Ladd, J. N. and J. H. A. Butler. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4: 19-30. https://doi.org/10.1016/0038-0717(72)90038-7
  21. Larsen, H. 1986. Halophilic and halotolerant microorganisms - an overview and historical perspective. FEMS Microbiol. Rev. 39: 3-7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
  22. Li, F. M., Q. H. Song, K. J. Patrick, and Y. Ch. Shi. 2004. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biol. Biochem. 36: 1893-1902. https://doi.org/10.1016/j.soilbio.2004.04.040
  23. Liang, Y. C., Y. F. Yang, C. G. Yang, Q. Q. Shen, J. M. Zhou, and L. Z. Yang. 2003. Soil enzymatic activity and growth of rice and barley as influenced by organic matter in an anthropogenic soil. Geoderma 115: 149-160. https://doi.org/10.1016/S0016-7061(03)00084-3
  24. Naidu, R. and P. Rengasamy. 1993. Ion interactions and constraints to plant nutrition in Australian sodic soils. Aust. J. Soil Res. 31: 801-819. https://doi.org/10.1071/SR9930801
  25. Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter, pp. 539-579. In A. L. Page (ed.). Methods of Soil Analysis. Part 2, Agronomy Monographs 9, ASA and SSSA, Madison, WI.
  26. Ragab, M. 1993. Distribution pattern of soil microbial population in salt affected soils, pp. 467-472. In H. Lieth and A. A. Al- Masoom (eds.). Towards Rational Use of High Salinity Tolerant Plants (V-1): Deliberations About High Salinity Tolerant Plants and Ecosystems. Kluwer Academic Publishers, Dordrecht.
  27. Rietz, D. N. and R. J. Haynes. 2003. Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35: 845-854. https://doi.org/10.1016/S0038-0717(03)00125-1
  28. Rao, D. L. N. and H. Pathak. 1996. Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid Soil Res. Rehab. 10: 311-319. https://doi.org/10.1080/15324989609381446
  29. Sardinha, M., T. Muller, H. Schmeisky, and R. G. Joergensen. 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Appl. Soil Ecol. 23: 237-244. https://doi.org/10.1016/S0929-1393(03)00027-1
  30. Sarig, S. and Y. Steinberger. 1994. Microbial biomass response to seasonal fluctuation in soil salinity under the canopy of desert halophytes. Soil Biol. Biochem. 26: 1405-1408. https://doi.org/10.1016/0038-0717(94)90224-0
  31. Sarig, S., A. Fliessbach, and Y. Steinberger. 1993. Microbial biomass reflects the nitrogen and phosphorus economy of halophytes grown in salty desert soil. Biol. Fertil. Soils 21: 28-130.
  32. Schinner, F., R. O'hlinger, E. Kandeler, and R. Margesin. 1996. Methods in Soil Biology. Springer-Verlag, Berlin.
  33. Sparling, G. P. 1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health, pp. 97-119. In C. E. Pankhurst, B. M. Doube, and V. V. S. R. Gupta (eds.). Biological Indicators of Soil Health. CAB, Wallingford.
  34. Sumner, M. E. 1995. Sodic soils: New perspectives, pp. 1-34. In R. Naidu, M. E. Sumner, and P. Rengasamy (eds.). Australian Sodic Soils: Distribution, Properties and Management. CSIRO, Melbourne, Australia.
  35. Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
  36. Tripathi, S., A. Chakraborty, K. Chakrabartia, and B. K. Bandyopadhyay. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39: 2840-2848. https://doi.org/10.1016/j.soilbio.2007.05.027
  37. Tripathi, S., S. Kumari, A. Chakraborty, A. Gupta, K. Chakrabarti, and B. K. Bandyapadhyay. 2006. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fertil. Soils 42: 273-277. https://doi.org/10.1007/s00374-005-0037-6
  38. United States Department of Agriculture (USDA). 1954. Diagnosis and improvement of saline and alkali soils, pp. 1-160. In L. A. Richards (ed.). Agriculture. Hand Book No. 60. Oxford & IBH Publishing Company, New Delhi, India.
  39. Ventosa, A., M. Marquez, M. Garabito, and D. Arahal. 1998. Moderately halophilic Gram-positive bacterial diversity in hypersaline environments. Extremophiles. 2: 297-304. https://doi.org/10.1007/s007920050072
  40. Zahran, H. H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils 25: 211-223. https://doi.org/10.1007/s003740050306
  41. Zahran, H. H., A. M. Moharram, and H. A. Mohammad. 1992. Some ecological and physiological studies on bacteria isolated from salt affected soils of Egypt. J. Basic Microbiol. 35: 269- 275.

Cited by

  1. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils vol.29, pp.12, 2011, https://doi.org/10.1007/s11274-013-1399-9
  2. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil? vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106662
  3. Deciphering Diversity of Salt-Tolerant Bacilli from Saline Soils of Eastern Indo-gangetic Plains of India vol.32, pp.2, 2011, https://doi.org/10.1080/01490451.2014.938205
  4. Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands vol.99, pp.6, 2011, https://doi.org/10.1007/s00253-014-6187-4
  5. Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2123-9
  6. A Halotolerant Bacterium Bacillus licheniformis HSW-16 Augments Induced Systemic Tolerance to Salt Stress in Wheat Plant ( Triticum aestivum ) vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.01890
  7. Spatial and halophyte-associated microbial communities in intertidal coastal region of India vol.19, pp.5, 2017, https://doi.org/10.1080/15226514.2016.1244168
  8. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review vol.827, pp.1, 2019, https://doi.org/10.1007/s10750-017-3416-8
  9. Enzymatic variation of soils exposed to the impact of the soda plant in terms of biochemical parameters vol.16, pp.7, 2011, https://doi.org/10.1007/s13762-018-1959-5
  10. Soil Salinity and Moisture Control the Processes of Soil Nitrification and Denitrification in a Riparian Wetlands in an Extremely Arid Regions in Northwestern China vol.12, pp.10, 2011, https://doi.org/10.3390/w12102815
  11. The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria vol.11, pp.5, 2011, https://doi.org/10.3390/app11052233
  12. Differential effects of various reclamation treatments on soil characteristics: an experimental study of newly reclaimed tidal mudflats on the east China coast vol.768, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2021.144996
  13. Impact of Technogenic Saline Soils on Some Chemical Properties and on the Activity of Selected Enzymes vol.14, pp.16, 2011, https://doi.org/10.3390/en14164882