References
- Ahmad, N., R. H. Qureshi, and M. Qadir. 1990. Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degrad. Develop. 2: 277-284. https://doi.org/10.1002/ldr.3400020404
- Bandyapadhyay, B. K., B. Maji, H. S. Sen, and N. K. Tyagi. 2003. Coastal Soils of West Bengal - Their Nature, Distribution and Characteristics. Bulletin No. 1/2003, pp. 1-62. Central Soil Salinity Research Institute, Regional Research Station, Canning Town, West Bengal, India.
- Batra, L. and M. C. Manna. 1997. Dehydrogenase activity and microbial biomass carbon in salt affected soils of semiarid and arid regions. Arid Soil Res. Rehab. 11: 295-303. https://doi.org/10.1080/15324989709381481
- Bockheim, F. G. and S. Langley-Turnbaugh. 1997. Biogeochemical cycling in coniferous ecosystems on different aged marine terraces in coastal Oregon. J. Environ. Qual. 26: 292-301.
- Brisou, J., D. Courtois, and F. Denis. 1974. Microbiological study of a hypersaline lake in French Somaliland. Appl. Microbiol. 27: 819-822.
- Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371-376. https://doi.org/10.1097/00010694-196412000-00004
- Cookson, P. 1999. Special variation in soil urease activity around irrigated date palms. Arid Soil Res. Rehab. 13: 155- 169. https://doi.org/10.1080/089030699263393
- Dick, W. A. and M. A. Tabatabai. 1984. Kinetic parameters of phosphatases in soils and organic waste materials. Soil Sci. 137: 7-15. https://doi.org/10.1097/00010694-198401000-00002
- Egamberdieva, D., G. Renella, S. Wirth, and R. Islam. 2010. Secondary salinity effects on soil microbial biomass. Biol. Fertil. Soils 46: 445-449. https://doi.org/10.1007/s00374-010-0452-1
- Eivazi, F. and M. A. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 20: 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
- Eivazi, F. and M. A. Tabatabai. 1977. Phosphatases in soils. Soil Biol. Biochem. 9: 167-172. https://doi.org/10.1016/0038-0717(77)90070-0
- Frankenberger, W. T. and F. T. Bingham. 1982. Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J. 46: 1173- 1177. https://doi.org/10.2136/sssaj1982.03615995004600060011x
- Garc a, C. and T. Hernandez. 1996. Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178: 255-263. https://doi.org/10.1007/BF00011591
- Garcia, C., T. Hernandez, and F. Costa. 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biol. Biochem. 26: 1185-1191. https://doi.org/10.1016/0038-0717(94)90142-2
- Ghaly, F. M. 2002. Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Till. Res. 64: 173-178. https://doi.org/10.1016/S0167-1987(01)00240-9
- Grattan, S. R. and C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78: 127-157.
- Harris, R. F. 1981. Effect of water potential on microbial growth and activity, pp. 23-95. In J. F. Parr, W. R. Gardner, and L. F. Elliott (eds.). Water Potential Relations in Soil Microbiology. Special Publication No. 9. Soil Science Society of America Inc., Madison, WI, USA.
- Keren, R. 2000. Salinity, pp. 3-25. In M. E. Sumner (ed.). Handbook of Soil Science. CRC Press, Boca Raton.
- Kushner, D. J. 1993. Growth and nutrition of halophilic bacteria, pp. 87-89. In R. H. Vreeland and L. I. Hochstein (eds.). The Biology of Halophilic Bacteria. CRC Press, Boca Raton.
- Ladd, J. N. and J. H. A. Butler. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4: 19-30. https://doi.org/10.1016/0038-0717(72)90038-7
- Larsen, H. 1986. Halophilic and halotolerant microorganisms - an overview and historical perspective. FEMS Microbiol. Rev. 39: 3-7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
- Li, F. M., Q. H. Song, K. J. Patrick, and Y. Ch. Shi. 2004. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biol. Biochem. 36: 1893-1902. https://doi.org/10.1016/j.soilbio.2004.04.040
- Liang, Y. C., Y. F. Yang, C. G. Yang, Q. Q. Shen, J. M. Zhou, and L. Z. Yang. 2003. Soil enzymatic activity and growth of rice and barley as influenced by organic matter in an anthropogenic soil. Geoderma 115: 149-160. https://doi.org/10.1016/S0016-7061(03)00084-3
- Naidu, R. and P. Rengasamy. 1993. Ion interactions and constraints to plant nutrition in Australian sodic soils. Aust. J. Soil Res. 31: 801-819. https://doi.org/10.1071/SR9930801
- Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter, pp. 539-579. In A. L. Page (ed.). Methods of Soil Analysis. Part 2, Agronomy Monographs 9, ASA and SSSA, Madison, WI.
- Ragab, M. 1993. Distribution pattern of soil microbial population in salt affected soils, pp. 467-472. In H. Lieth and A. A. Al- Masoom (eds.). Towards Rational Use of High Salinity Tolerant Plants (V-1): Deliberations About High Salinity Tolerant Plants and Ecosystems. Kluwer Academic Publishers, Dordrecht.
- Rietz, D. N. and R. J. Haynes. 2003. Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35: 845-854. https://doi.org/10.1016/S0038-0717(03)00125-1
- Rao, D. L. N. and H. Pathak. 1996. Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid Soil Res. Rehab. 10: 311-319. https://doi.org/10.1080/15324989609381446
- Sardinha, M., T. Muller, H. Schmeisky, and R. G. Joergensen. 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Appl. Soil Ecol. 23: 237-244. https://doi.org/10.1016/S0929-1393(03)00027-1
- Sarig, S. and Y. Steinberger. 1994. Microbial biomass response to seasonal fluctuation in soil salinity under the canopy of desert halophytes. Soil Biol. Biochem. 26: 1405-1408. https://doi.org/10.1016/0038-0717(94)90224-0
- Sarig, S., A. Fliessbach, and Y. Steinberger. 1993. Microbial biomass reflects the nitrogen and phosphorus economy of halophytes grown in salty desert soil. Biol. Fertil. Soils 21: 28-130.
- Schinner, F., R. O'hlinger, E. Kandeler, and R. Margesin. 1996. Methods in Soil Biology. Springer-Verlag, Berlin.
- Sparling, G. P. 1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health, pp. 97-119. In C. E. Pankhurst, B. M. Doube, and V. V. S. R. Gupta (eds.). Biological Indicators of Soil Health. CAB, Wallingford.
- Sumner, M. E. 1995. Sodic soils: New perspectives, pp. 1-34. In R. Naidu, M. E. Sumner, and P. Rengasamy (eds.). Australian Sodic Soils: Distribution, Properties and Management. CSIRO, Melbourne, Australia.
- Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
- Tripathi, S., A. Chakraborty, K. Chakrabartia, and B. K. Bandyopadhyay. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39: 2840-2848. https://doi.org/10.1016/j.soilbio.2007.05.027
- Tripathi, S., S. Kumari, A. Chakraborty, A. Gupta, K. Chakrabarti, and B. K. Bandyapadhyay. 2006. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fertil. Soils 42: 273-277. https://doi.org/10.1007/s00374-005-0037-6
- United States Department of Agriculture (USDA). 1954. Diagnosis and improvement of saline and alkali soils, pp. 1-160. In L. A. Richards (ed.). Agriculture. Hand Book No. 60. Oxford & IBH Publishing Company, New Delhi, India.
- Ventosa, A., M. Marquez, M. Garabito, and D. Arahal. 1998. Moderately halophilic Gram-positive bacterial diversity in hypersaline environments. Extremophiles. 2: 297-304. https://doi.org/10.1007/s007920050072
- Zahran, H. H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils 25: 211-223. https://doi.org/10.1007/s003740050306
- Zahran, H. H., A. M. Moharram, and H. A. Mohammad. 1992. Some ecological and physiological studies on bacteria isolated from salt affected soils of Egypt. J. Basic Microbiol. 35: 269- 275.
Cited by
- A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils vol.29, pp.12, 2011, https://doi.org/10.1007/s11274-013-1399-9
- Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil? vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106662
- Deciphering Diversity of Salt-Tolerant Bacilli from Saline Soils of Eastern Indo-gangetic Plains of India vol.32, pp.2, 2011, https://doi.org/10.1080/01490451.2014.938205
- Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands vol.99, pp.6, 2011, https://doi.org/10.1007/s00253-014-6187-4
- Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2123-9
- A Halotolerant Bacterium Bacillus licheniformis HSW-16 Augments Induced Systemic Tolerance to Salt Stress in Wheat Plant ( Triticum aestivum ) vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.01890
- Spatial and halophyte-associated microbial communities in intertidal coastal region of India vol.19, pp.5, 2017, https://doi.org/10.1080/15226514.2016.1244168
- Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review vol.827, pp.1, 2019, https://doi.org/10.1007/s10750-017-3416-8
- Enzymatic variation of soils exposed to the impact of the soda plant in terms of biochemical parameters vol.16, pp.7, 2011, https://doi.org/10.1007/s13762-018-1959-5
- Soil Salinity and Moisture Control the Processes of Soil Nitrification and Denitrification in a Riparian Wetlands in an Extremely Arid Regions in Northwestern China vol.12, pp.10, 2011, https://doi.org/10.3390/w12102815
- The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria vol.11, pp.5, 2011, https://doi.org/10.3390/app11052233
- Differential effects of various reclamation treatments on soil characteristics: an experimental study of newly reclaimed tidal mudflats on the east China coast vol.768, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2021.144996
- Impact of Technogenic Saline Soils on Some Chemical Properties and on the Activity of Selected Enzymes vol.14, pp.16, 2011, https://doi.org/10.3390/en14164882