DOI QR코드

DOI QR Code

Molecular Classification of Commercial Spirulina Strains and Identification of Their Sulfolipid Biosynthesis Genes

  • Kwei, Chee Kuan (School of Chemical Engineering, University of Adelaide) ;
  • Lewis, David (School of Chemical Engineering, University of Adelaide) ;
  • King, Keith (School of Chemical Engineering, University of Adelaide) ;
  • Donohue, William (School of Population Health and Clinical Practice, University of Adelaide) ;
  • Neilan, Brett A. (School of Biotechnology and Biomolecular Sciences, University of New South Wales)
  • Received : 2010.08.16
  • Accepted : 2011.01.13
  • Published : 2011.04.28

Abstract

Cyanobacterial strains of the genus Spirulina have recently been identified as an excellent source of sulfolipids, some of which possess anti-HIV properties. Thus, to investigate the distribution of sufolipid biosynthesis pathways in Spirulina, a genetic screening/phylogentic study was performed. Five different strains of Spirulina [Spirulina (Jiangmen), Spirulina sp., S. platensis, S. maxima, and Spirulina seawater] sourced from different locations were initially classified via 16S rDNA sequencing, and then screened for the presence of the sulfolipid biosynthesis genes sqdB and sqdX via a PCR. To assess the suitability of these strains for human consumption and safe therapeutic use, the strains were also screened for the presence of genes encoding nonribosomal peptide synthases (NRPSs) and polyketide synthases (PKSs), which are often associated with toxin pathways in cyanobacteria. The results of the 16S rDNA analysis and phylogenetic study indicated that Spirulina sp. is closely related to Halospirulina, whereas the other four Spirulina strains are closely related to Arthrospira. Homologs of sqdB and sqdX were identified in Spirulina (Jiangmen), Spirulina sp., S. platensis, and the Spirulina seawater. None of the Spirulina strains screened in this study tested positive for NRPS or PKS genes, suggesting that these strains do not produce NRP or PK toxins.

Keywords

References

  1. Aoki, M., N. Sato, A. Meguro, and M. Tsuzuki. 2004. Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria. Eur. J. Biochem. 271: 685-693. https://doi.org/10.1111/j.1432-1033.2003.03970.x
  2. Barrios-Llerena, M., A. Burja, and P. Wright. 2007. Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J. Ind. Microbiol. Biotechnol. 34: 443-456. https://doi.org/10.1007/s10295-007-0216-6
  3. Benning, C. and C. R. Somerville. 1992. Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J. Bacteriol. 174: 6479-6487.
  4. Blinkova, L. P., O. B. Gorobets, and A. P. Baturo. 2001. Biological activity of Spirulina. Zh. Mikrobiol. Epidemiol. Immunobiol. 2: 114-118.
  5. Bolch, C. and S. Blackburn. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kutz. J. Appl. Phycol. 8: 5-13.
  6. Christiansen, G., E. Dittmann, L. Via Ordorika, R. Rippka, M. Herdman, and T. Börner. 2001. Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch. Microbiol. 176: 452-458. https://doi.org/10.1007/s002030100349
  7. Ehrenreich, I. M., J. B. Waterbury, and E. A. Webb. 2005. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl. Environ. Microbiol. 71: 7401-7413. https://doi.org/10.1128/AEM.71.11.7401-7413.2005
  8. Gehringer, M. M., J. J. L. Pengelly, W. S. Cuddy, C. Fieker, P. I. Forster, and B. A. Neilan. 2010. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). Mol. Plant Microbe Interact. 23: 811-822. https://doi.org/10.1094/MPMI-23-6-0811
  9. Gustafson, K. R., J. H. Cardellina, R. W. Fuller, O. S. Weislow, R. F. Kiser, K. M. Snader, G. M. L. Patterson, and M. R. Boyd. 1989. AIDS-antiviral sulfolipids from cyanobacteria (blue-greenalgae). J. Natl. Cancer Inst. 81: 1254-1258. https://doi.org/10.1093/jnci/81.16.1254
  10. Jungblut, A.-D., I. Hawes, D. Mountfort, B. Hitzfeld, D. R. Dietrich, B. P. Burns, and B. A. Neilan. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519-529. https://doi.org/10.1111/j.1462-2920.2005.00717.x
  11. Khan, Z., P. Bhadouria, and P. S. Bisen. 2005. Nutritional and therapeutic potential of Spirulina. Curr. Pharm Biotechnol. 6: 373-379. https://doi.org/10.2174/138920105774370607
  12. Komárek, J. 2010. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245-259. https://doi.org/10.1007/s10750-009-0031-3
  13. Kwei, C. K., D. M. Lewis, K. D. King, W. Donohue, and B. A. Neilan. 2010. The extraction of sulfoquinovosyldiacylglyceride from Spirulina. In: The 40th Australasian Chemical Engineering Conference, Adelaide, 2010.
  14. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  15. Loya, S., V. Reshef, F. Mizrachi, C. Silberstein, Y. Rachamim, S. Carmeli, and A. Hizi. 1998. The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: Contribution of different moieties to their high potency. J. Nat. Prod. 61: 891-895. https://doi.org/10.1021/np970585j
  16. Mizushina, Y., I. Watanabe, K. Ohta, M. Takemura, H. Sahara, N. Takahashi, et al. 1998. Studies on inhibitors of mammalian DNA polymerase alpha and beta: Sulfolipids from a pteridophyte, Athyrium niponicum. Biochem. Pharmacol. 55: 537-541. https://doi.org/10.1016/S0006-2952(97)00536-4
  17. Moffitt, M. C. and B. A. Neilan. 2001. On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol. Lett. 196: 207-214. https://doi.org/10.1111/j.1574-6968.2001.tb10566.x
  18. Neilan, B. A., E. Dittmann, L. Rouhiainen, R. A. Bass, V. Schaub, K. Sivonen, and T. Borner. 1999. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181: 4089-4097.
  19. Neilan, B. A., D. Jacobs, T. DelDot, L. L. Blackall, P. R. Hawkins, P. T. Cox, and A. E. Goodman. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47: 693-697. https://doi.org/10.1099/00207713-47-3-693
  20. Nishizawa, T., A. Ueda, M. Asayama, K. Fujii, K. Harada, K. Ochi, and M. Shirai. 2000. Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J. Biochem. 127: 779-789. https://doi.org/10.1093/oxfordjournals.jbchem.a022670
  21. Ohta, K., S. Hanashima, Y. Mizushina, T. Yamazaki, M. Saneyoshi, F. Sugawara, and K. Sakaguchi. 2000. Studies on a novel DNA polymerase inhibitor group, synthetic sulfoquinovosylacylglycerols: Inhibitory action on cell proliferation. Mutat. Res. 467: 139-152. https://doi.org/10.1016/S1383-5718(00)00028-0
  22. Ohta, K., Y. Mizushina, N. Hirata, M. Takemura, F. Sugawara, A. Matsukage, S. Yoshida, and K. Sakaguchi. 1998. Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem. Pharm. Bull. (Tokyo) 46: 684-686.
  23. Perriere, G. and M. Gouy. 1996. WWW-query: An on-line retrieval system for biological sequence banks. Biochimie 78: 364-369. https://doi.org/10.1016/0300-9084(96)84768-7
  24. Preu$\beta$el, K., A. Stuken, C. Wiedner, I. Chorus, and J. Fastner. 2006. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes.
  25. Reshef, V., F. Mizrachi, T. Maretzki, C. Silberstein, S. Loya, A. Hizi, and S. Carmeli. 1997. New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit the reverse transcriptase of HIV-1. J. Nat. Prod. 60: 1251-1260. https://doi.org/10.1021/np970327m
  26. Sahara, H., M. Ishikawa, N. Takahashi, S. Ohtani, N. Sato, S. Gasa, T. Akino, and K. Kikuchi. 1997. In vivo anti-tumour effect of 3'-sulphonoquinovosyl 1'-monoacylglyceride isolated from sea urchin (Strongylocentrotus intermedius) intestine. Br. J. Cancer 75: 324-332. https://doi.org/10.1038/bjc.1997.54
  27. Sato, N., K. Sugimoto, A. Meguro, and M. Tsuzuki. 2003. Identification of a gene for UDP-sulfoquinovose synthase of a green alga, Chlamydomonas reinhardtii, and its phylogeny. DNA Res. 10: 229-237. https://doi.org/10.1093/dnares/10.6.229
  28. Selstam, E. and D. Campbell. 1996. Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch. Microbiol. 166: 132-135. https://doi.org/10.1007/s002030050367
  29. Shirahashi, H., N. Murakami, M. Watanabe, A. Nagatsu, J. Sakakibara, H. Tokuda, H. Nishino, and A. Iwashima. 1993. Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem. Pharm. Bull. (Tokyo). 41: 1664-1666. https://doi.org/10.1248/cpb.41.1664
  30. Tillett, D., E. Dittmann, M. Erhard, H. von Dohren, T. Borner, and B. A. Neilan. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem. Biol. 7: 753-764. https://doi.org/10.1016/S1074-5521(00)00021-1
  31. Tredici, M. R., M. C. Margheri, R. De Philippis, F. Bocci, and R. Materassi. 1988. Marine cyanobacteria as a potential source of biomass and chemicals. Int. J. Solar Energy 6: 235-246. https://doi.org/10.1080/01425918808914231
  32. Vasange, M. H., W. Rolfsen, and L. Bohlin. 2004. Use of sulphoquinovosyldiacylglycerols for the treatment of inflammatory skin diseases. European patent EP0952836.
  33. Vonshak, A. 1997. Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd, London.
  34. Yu, B., C. Xu, and C. Benning. 2002. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphatelimited growth. Plant Biol. 99: 5732-5737.

Cited by

  1. Divergence in three newly identified Arthrospira species from Mexico vol.31, pp.7, 2015, https://doi.org/10.1007/s11274-015-1865-7
  2. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms vol.1861, pp.9, 2011, https://doi.org/10.1016/j.bbalip.2016.04.015
  3. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae vol.9, pp.5, 2011, https://doi.org/10.3390/antibiotics9050229