DOI QR코드

DOI QR Code

SUBGROUP ACTIONS AND SOME APPLICATIONS

  • Han, Juncheol (Department of Mathematics Educations Pusan National University) ;
  • Park, Sangwon (Department of Mathematics Dong-A University)
  • Received : 2011.03.15
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. J. A. Cohen and K. Koh, Half-transitive group actions in a compact ring, J. Pure Appl. Algebra 60 (1989), 139-153. https://doi.org/10.1016/0022-4049(89)90126-6
  2. J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25(7) (1997), 2227-2236. https://doi.org/10.1080/00927879708825984
  3. J. Han, Group actions in a unit-regular ring, Comm. Algebra 27(7) (1999), 3353-3361. https://doi.org/10.1080/00927879908826632
  4. J. Han, General linear group over a ring integers of modulo k,, Kyungpook Math. J. 46(3) (2006), 255-260.
  5. T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc., 1974.
  6. D. S. Passman, The algebraic structure of group rings, John Wiley and Sons, Inc., 1977.