References
- Birkel, T. (1998). Moment bounds for associated sequences, Annals of Probability, 16, 1184-1193.
-
Cai, G. (2000). The Hajek-Renyi Inequality for
$\rho$ *-Mixing Sequences of Random Variables, Department of Mathematics, Zhejiang University, Preprint. - Esary, J. D., Proschan, F. and Walkup, D. W. (1967). Association of random variables with applications, The Annals of Mathematical Statistics, 38, 1466-1474. https://doi.org/10.1214/aoms/1177698701
- Gan, S. (1997). The Hajek-Renyi Inequality for Banach space valued martingales and the p smoothness of Banach space, Statistics & Probability Letters, 32, 245-248. https://doi.org/10.1016/S0167-7152(96)00080-6
- Hajek, J. and Renyi, A. (1955). Generalization of an inequality of Kolmogorov, Acta Mathematica Hungarica, 6, 281-283. https://doi.org/10.1007/BF02024392
- Hu, S. H., Hu, X. P. and Zhang, L. S. (2005). The Hajek-Renyi-type inequality under second moment condition and its application, Acta Mathematicae Applicatea Sinica, 28, 227-235.
- Ioannides, D. A. and Roussas, G . G. (1999). Exponential inequality for associated random variables, Statistics & Probability Letters, 42, 423-431. https://doi.org/10.1016/S0167-7152(98)00240-5
- Lin, Z. Y. (1997). An invariance principle for negatively associated random variables, Chinese Science Bulletin, 42, 359-364. https://doi.org/10.1007/BF02884220
- Liu, J., Gan, S. and Chen, P. (1999). The Hajek-Renyi inequality for NA random variables and its application, Statistics & Probability Letters, 43, 99-105. https://doi.org/10.1016/S0167-7152(98)00251-X
- Majerak, D., Nowak, W. and Zie, W. (2005). Conditional strong law of large numbers, International Journal of Pure and Applied Mathematics, 20, 143-157.
- Newman, C. M. and Wright, A. L. (1981). An invariance principle for certain dependent sequences, Annals of Probability, 9, 671-675. https://doi.org/10.1214/aop/1176994374
- Newman, C. M. and Wright, A. L. (1982). Associated random variables and martingale inequalities, Probability Theory and Related Fields, 59, 361-371.
- Oliveira, P. D. (2005). An exponential inequality for associated variables, Statistics & Probability Letters, 73 189-197. https://doi.org/10.1016/j.spl.2004.11.023
- Prakasa, Rao, B. L. S. (2002). Hajak-Renyi inequality for associated sequences, Statistics & Probability Letters, 57, 139-143. https://doi.org/10.1016/S0167-7152(02)00025-1
- Prakasa Rao, B. L. S. (2009). Conditional independence, conditional mixing and conditional association, Annals of the Institute of Statistical Mathematics, 61, 441-460. https://doi.org/10.1007/s10463-007-0152-2
- Qiu, D. and Gan, S. (2005). The Hajek-Renyi inequality for the NA random variables, Journal of Mathematics, Wuhan University, 25, 553-557.
- Rao, B. L. S. P. (2002). The Hajek-Renyi type inequality for associated sequences, Statistics & Probability Letters, 57, 139-143. https://doi.org/10.1016/S0167-7152(02)00025-1
- Shao, Q. M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences, Annals of Probability, 24, 2098-2127. https://doi.org/10.1214/aop/1041903220
- Sung, H. S. (2008). A note on the Hajek-Renyi inequality for associated random variables, Statistics & Probability Letters, 78, 885-889. https://doi.org/10.1016/j.spl.2007.09.015
- Wang, J. F. and Zhang, L. X. (2006). A nonclassical law of the iterated logarithm for function of positively associated random variables, Metika, 64, 361-378.
- Yang, S. C. and Chen, M. (2007). Exponential inequalities for associated random variables and strong laws of large numbers, Science in China Series A: Mathematics, 50, 705-714. https://doi.org/10.1007/s11425-007-0026-3
- Yuan, D. M. and Yang, Y. K. (2011). Conditional versions of limit theorems for conditionally associated random variables, Journla of Mathematical Analysis and Applications, 376, 282-293. https://doi.org/10.1016/j.jmaa.2010.10.046