References
- Agresti, A. (2002). Categorical Data Analysis, Second Edition, Wiley, New York.
- Firth, D. (1993). Recent development in quasi-likelihood methods, Proceedings of ISI 49th Session, 341-358.
- Halekoh, U., Hojsgaard, S. and Yan, J. (2006). The R package geepack for generalized estimating equations, Journal of Statistical Software, 15, 1-11.
- Jeong, K. M. (2005). Generalized linear mixed models for ordinal response in clustered data, Journal of the Korean Data Analysis Society, 7, 817-828.
- Kauermann, G. and Caroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation, Journal of the American Statistical Association, 96, 1387-1397. https://doi.org/10.1198/016214501753382309
- Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data using generalized linear models, Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
- Nores, M. L. and Diez, M. P. (2008). Some properties of regression estimates in GEE models for clustered ordinal data, Computational Statistics & Data Analysis, 52, 3877-3888. https://doi.org/10.1016/j.csda.2007.12.009
- R Development Core Team (2006). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL: http://www.r-project.org.
- Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671. https://doi.org/10.2307/2532086
- Yan, J. (2002). Geepack: Yet another package for generalized estimating equations, R News, 2, 12-14.