References
- 김부용, 신명희 (2010). 주성분회귀분석에서 주성분선정을 위한 새로운 방법, <응용통계연구>, 23, 967-975. https://doi.org/10.5351/KJAS.2010.23.5.967
- Fauconnier, C. and Haesbroeck, G. (2009). Outliers detections with the minimum covariance determinant estimator in practice, Statistical Methodology, 6, 363-379. https://doi.org/10.1016/j.stamet.2008.12.005
- Hadi, A. S. and Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.2307/2291266
- Hubert, M. and Verboven, S. (2003). A robust PCR method for high-dimensional regressors, Journal of Chemometrics, 17, 438-452. https://doi.org/10.1002/cem.783
- Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. I: artificial data, Applied Statistics, 21, 160-173. https://doi.org/10.2307/2346488
- Karlis, D., Saporta, G. and Spinakis, A. (2003). A simple rule for the selection of principal components, Communications in Statistics-Theory and Methods, 32, 643-666. https://doi.org/10.1081/STA-120018556
- Kim, B. Y. and Kim, H. Y. (2002). Hybrid algorithm for identification of regression outliers, The Korean Communications in Statistics, 9, 291-304. https://doi.org/10.5351/CKSS.2002.9.1.291
- Kim, B. Y. and Oh, M. H. (2004). Identification of regression outliers based on clustering of LMS-residual plots, The Korean Communications in Statistics, 11, 485-494. https://doi.org/10.5351/CKSS.2004.11.3.485
- Legendre, P. and Legendre, L. (1998). Numerical Ecology, Elsevier Science, Amsterdam.
- Marden, J. I. (1999). Some robust estimates of principal components, Statistics & Probability Letters, 43, 349-359. https://doi.org/10.1016/S0167-7152(98)00272-7
- Marquardt, D. W. (1970). Generalized inverse, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591-612. https://doi.org/10.2307/1267205
- Mason, R. L. and Gunst, R. F. (1985). Outlier-induced collinearities, Technometrics, 27, 401-407. https://doi.org/10.2307/1270207
- McKean, J. W., Sheather, S. J. and Hettmansperger, T. P. (1993). The use and interpretation of residuals based on robust estimation, Journal of the American Statistical Association, 88, 1254-1263. https://doi.org/10.2307/2291265
- Pidot, Jr., G. B. (1969). A principal components of the determinants of local government fiscal patterns, The Review of Economics and Statistics, 51, 176-188. https://doi.org/10.2307/1926727
- Rocke, D. M. and Woodruff, D. L. (1997). Robust estimation of multivariate location and shape, Journal of Statistical Planning and Inference, 57, 245-255. https://doi.org/10.1016/S0378-3758(96)00047-X
- Rousseeuw, P. J. (1984). Least median of squares regression, Journal of the American Statistical Association, 79, 871-880. https://doi.org/10.2307/2288718
- Rousseeuw, P. J. and Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41, 212-223. https://doi.org/10.2307/1270566
- Rousseeuw, P. J. and Driessen, K. (2006). Computing LTS regression for large data sets, Data Mining and Knowledge Discovery, 12, 29-45. https://doi.org/10.1007/s10618-005-0024-4
- Rousseeuw, P. J. and Leroy, A. M. (2003). Robust Regression and Outlier Detection, Wiley-Interscience.
- Rousseeuw, P. J. and Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points, Journal of the American Statistical Association, 85, 633-639. https://doi.org/10.2307/2289995
- Woodruff, D. L. and Rocke, D. M. (1994). Computable robust estimation of multivariate location and shape in high dimension using compound estimators, Journal of the American Statistical Association, 89, 888-896. https://doi.org/10.2307/2290913